Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1536
    Keywords: Key words Neutron scattering ; Polymer blend ; Thin films
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The surface morphologies of confined, dewetted polymer films were investigated with atomic force microscopy (AFM) and grazing-incidence small-angle neutron scattering (GISANS). On examining homopolymer films of deuterated polystyrene (dPS) both techniques reveal the resulting droplet structure which is described by one most prominent in-plane length. Due to the contrast resulting from deuteration in the case of polymer blend films of dPS and poly(p-methyl styrene) GISANS is able to probe the in-plane composition of the dewetting structure. An additional phase separation process at different length scales gives rise to a sub- and superstructure which is not detectable by AFM. In addition, the influence of the wavelength used in the GISANS experiments on the structures observed is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 278 (2000), S. 993-999 
    ISSN: 1435-1536
    Keywords: Key words Polymer blends ; Thin films ; Topography ; Polystyrene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Thin films of blends of polystyrene (PS) and poly(n-butyl methacrylate) (PBMA) were prepared by spin-casting onto silicon wafers in order to map the lateral distribution of the two polymers. The surfaces were examined by atomic force microscopy (AFM) secondary ion mass spectroscopy X-ray photoelectron spectroscopy (XPS) and photoemission electron microscopy (PEEM). Films with PBMA contents of 50% w/w or less were relatively smooth, but further increase in the PBMA content produced, initially, protruding PS ribbons and then, for PBMA ≥80% w/w, isolated PS islands. At all concentrations the topmost surface (0.5–1.0 nm) was covered by PBMA, whilst the PBMA concentration in the near-surface region, measured by XPS, increased with bulk content to eventual saturation. PEEM measurements of a PS–PBMA film at the composition at which ribbon features were observed by AFM also showed a PS-rich ribbon structure surrounded by a sea of mainly PBMA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 278 (2000), S. 888-893 
    ISSN: 1435-1536
    Keywords: Key words Polymer blends ; Thin films ; Topography ; Polystyrene ; Molecular weight
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Blends of polystyrene and poly(4-bromostyrene) phase-separate during spin-casting onto silicon wafers to give a thin film with islands of poly(4-bromostyrene) in a sea of polystyrene. Variation of the molecular weights of the blend components shows that the poly- (4-bromostyrene) and polystyrene influence the film structure in different ways. For poly(4-bromostyrene) of a given molecular weight, the ratio of the observed feature height to the overall film thickness remained constant as the film thickness increased. Moreover, the mean height of the topographical features was independent of the polystyrene but decreased with the molecular weight of the brominated polymer. It is concluded that the substrate–poly(4-bromostyrene) interaction dominates the formation of topography and consequently, though the islands are poly(4-bromostyrene), the mean height of the topographical features is greater the lower the molecular weight of the brominated polymer. The polystyrene has a secondary role, altering the thermodynamics or viscosity of the blend, thereby controlling the number of islands formed: the higher the molecular weight of the polystyrene the greater the number of islands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 278 (2000), S. 502-508 
    ISSN: 1435-1536
    Keywords: Key words Polyampholytes ; Ellipsometry ; Force microscopy ; Adsorption ; Micelles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  The adsorption of the diblock polyampholyte poly (methacrylic acid)-block-poly((dimethylamino)ethyl methacrylate) from aqueous solution on silicon substrates was investigated as a function of polymer concentration and pH. Dynamic light scattering and electrokinetic measurements were used to characterize the polyampholyte in solution. The amount of polymer adsorbed was determined by ellipsometry and lateral structures of the polymer layer were investigated by scanning force microscopy. The amount of polymer adsorbed was found to be strongly influenced by the pH of the polymer solution, while the size of the polyampholyte micelles adsorbed on the surface was hardly affected by pH during adsorption. From investigations by scanning force microscopy well-seperated micelles were seen in the dried monolayers adsorbed directly from solution. The structures at the surface are correlated to structures in solution, and the adsorbed amount depends on the relative charge of the micelles and the surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...