Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 28 (2000), S. 174-181 
    ISSN: 1573-9686
    Keywords: Thrombosis ; Emboli ; Antagonist
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Nitric oxide (NO) is a physiological species involved in inhibition of platelet adhesion and aggregation. A novel NO delivery device was utilized to quantitatively assess the effects of gaseous NO on platelet deposition to agonist-coated biomaterials in the presence of a platelet suspension. Platelet deposition was evaluated as a function of agonist (collagen, fibrinogen, or IgG), shear rate (250, 500, and 750 s−1), and perfusion time (5, 7.5, and 15 min). The minimal aqueous surface NO concentrations and fluxes necessary for significant inhibition of platelet deposition were quantified. Platelet deposition was completely inhibited at a gaseous NO exposure of 0.1 ppm, irrespective of the platelet agonist, shear rate, and perfusion time. The corresponding aqueous surface NO concentration was 0.09 nM at 250 s−1 as predicted by a validated model. Surface fluxes ranged between 0.3 and 0.6 femtomoles cm−2 s−1. The results of this study are useful for establishing generalized guidelines (i.e., NO flux requirements in the presence of agonists, shear rate, and perfusion time) for the design and development of suitable biomaterials incorporating NO to reduce platelet deposition. Further studies incorporating blood, rather than platelet suspensions, are required to provide a more complete assessment of the required NO flux necessary to inhibit platelet deposition. © 2000 Biomedical Engineering Society. PAC00: 8717-d, 8719Tt
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...