Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 81-100 
    ISSN: 0271-2091
    Keywords: boundary element ; velocity ; gradients ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The direct boundary element method is an excellent candidate for imposing the normal flux boundary condition in vortex simulation of the three-dimensional Navier-Stokes equations. For internal flows, the Neumann problem governing the velocity potential that imposes the correct normal flux is ill-posed and, in the discrete form, yields a singular matrix. Current approaches for removing the singularity yield unacceptable results for the velocity and its gradients. A new approach is suggested based on the introduction of a pseudo-Lagrange multiplier, which redistributes localized discretization errors - endemic to collocation techniques -  over the entire domain surface, and is shown to yield excellent results. Additionally, a regularized integral formulation for the velocity gradients is developed which reduces the order of the integrand singularity from four to two. This new formulation is necessary for the accurate evaluation of vorticity stretch, especially as the evaluation points approach the boundaries. Moreover, to guarantee second-order differentiability of the boundary potential distribution, a piecewise quadratic variation in the potential is assumed over triangular boundary elements. Two independent node-numbering systems are assigned to the potential and normal flux distribu- tions on the boundary to account for the single- and multi-valuedness of these variables, respectively. As a result, higher accuracy as well as significantly reduced memory and computational cost is achieved for the solution of the Neumann problem. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 237-260 
    ISSN: 0271-2091
    Keywords: Vortex methods ; Recirculating flows ; Piston-cylinder ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical scheme based on the application of the vortex method to update the vorticity field and the implementation of the finite element method to satisfy the normal velocity boundary condition inside a complex time-dependent geometry is applied to simulate the flow produced by a piston sliding out of a chamber equipped with single or multiple intakes. This unsteady confined vortex flow is of interest in many applications. We use the idealization that the flow is incompressible, two-dimensional and planar and we analyse the results to study the flow during the intake process inside a model of an engine cylinder. The chamber top is fitted with an inlet channel, an inlet port or an inlet valve. In all cases when the intake channel axis coincides with that of the chamber, the flow in each side of the chamber consists essentially of two large counter-rotating eddies of almost the same size. The computed structures of these flows resemble qualitatively those which have been observed experimentally. The fluid motion is also computed for the case of a chamber equipped with an intake whose axis is not aligned with the chamber axis. In this case the flow at the end of the stroke is dominated by a single large eddy produced by the merging of the two eddies forming on the sides of the port.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...