Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 37 (1994), S. 3869-3903 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Development of a finite deformation elasto-plasticity model based on the multiplicative decomposition of the deformation gradient is presented and discussed in detail. The formulation presented in this paper includes the derivation of the full set of equations for the Drucker-Prager yield criterion. The equations, which are not available elsewhere, are developed within a framework using a spectral decomposition approach. Further, expressions for the consistent (algorithmic) tangent moduli in the finite strain regime are developed. Since the finite deformation framework employed to obtain the expressions presented here collapses to the classical infinitesimal plasticity framework when the finite strain assumption is no longer necessary, the finite deformation consistent tangent moduli are compared to the consistent tangent moduli valid for use with infinitesimal plasticity. Validation of the implemented finite deformation elasto-plastic Drucker-Prager model is performed through the solution of the concrete slump test. Comparisons between an existing approximate analytical solution and experimental data are presented, and results are discussed in detail.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 12 (1988), S. 497-504 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: An earlier publication1 considered the properties of circular conical failure surfaces whose axes coincide with the space diagonal in principal stress space. The present work uses a similar approach to analyse conical surfaces that are offset from the space diagonal. It is shown that cones fitted to the Mohr-Coulomb surface in triaxial compression contain a potential singularity. The occurrence and location of the singularity depends on the Mohr-Coulomb friction angle to which the surface is fitted in triaxial extension. It is shown that for a cone fitted to the same friction angle in both triaxial extension and compression, singular conditions occur when that angle reaches \documentclass{article}\pagestyle{empty}\begin{document}$ \sin ^{ - 1} \left({\sqrt 7 - 2} \right)\left({ = 40.22^\circ } \right) $\end{document}. Even cones fitted to smaller friction angles give significant overestimations of material strength for certain stress paths.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 14 (1990), S. 587-594 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A simple hyperbolic function is often used to illustrate typical stress-strain behaviour of geomaterials during monotonic loading. This approach has the disadvantage that the failure condition is approached asymptotically, whereas in reality failure must occur at a finite value of strain. A modified hyperbolic function with one adjustable parameter is proposed in this paper. The function is shown to be capable of spanning all likely soil stress-strain data up to and including peak strength.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...