Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 12 (1996), S. 657-671 
    ISSN: 1069-8299
    Keywords: continuous casting ; free boundary problem ; co-ordinate transformation ; solidification front ; non-orthogonal control volume ; temperature profile ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An efficient computational simulation scheme based on non-orthogonal control volume discretization and co-ordinate transformation techniques has been developed for solving the thermal transport phenomena, which involves tracking of the interface between solid and liquid phases (solidification front) and evaluation of the temperature profile during continuous casting operation. Conservation equations are reformulated in differential-integral form in terms of the transformed co-ordinates. All the terms arising from the non-orthogonality of the control volume have been retained in the numerical solution methodology, and a front tracking procedure has been formulated based on an iterative solution scheme. The formulation has been applied to solve the thermal transport phenomena in solidification processing of an A1-Mg alloy cylindrical ingot during continuous casting, which also includes axial conduction of heat. Theoretical evaluation of the solidification front and temperature distribution in the ingot are in good agreement with the experimentally measured data.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 313-327 
    ISSN: 0271-2091
    Keywords: Numerical tidal model ; Data assimilation ; Parameter estimation ; Optimal control ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: It is shown that the parameters in a two-dimensional (depth-averaged) numerical tidal model can be estimated accurately by assimilation of data from tide gauges. The tidal model considered is a semi-linearized one in which kinematical non-linearities are neglected but non-linear bottom friction is included. The parameters to be estimated (bottom friction coefficient and water depth) are assumed to be position-dependent and are approximated by piecewise linear interpolations between certain nodal values. The numerical scheme consists of a two-level leapfrog method. The adjoint scheme is constructed on the assumption that a certain norm of the difference between computed and observed elevations at the tide gauges should be minimized. It is shown that a satisfactory numerical minimization can be completed using either the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm or Nash's truncated Newton algorithm. On the basis of a number of test problems, it is shown that very effective estimation of the nodal values of the parameters can be achieved provided the number of data stations is sufficiently large in relation to the number of nodes.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 295-312 
    ISSN: 0271-2091
    Keywords: Variational data assimilation ; Parameter estimation ; Numerical tidal model ; Eddy viscosity ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: It is shown that the eddy viscosity profile in a quasi-three-dimensional numerical tidal and storm surge model can be estimated by assimilation of velocity data from one or more current meters located on the same vertical line. The computational model used is a simplified version of the so-called vertical/horizontal splitting algorithm proposed by Lardner and Cekirge. We have estimated eddy viscosity both as a constant and as a variable parameter. The numerical scheme consists of a two-level leapfrog method to solve the depth-averaged equations and a generalized Crank-Nicolson scheme to compute the vertical profile of the velocity field. The cost functional in the adjoint scheme consists of two terms. The first term is a certain norm of the difference between computed and observed velocity data and the second term measures the total variation in the eddy viscosity function. The latter term is not needed when the data are exact for the model but is necessary to smooth out the instabilities associated with ‘noisy’ data. It is shown that a satisfactory minimization can be accomplished using either the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm or Nash's truncated Newton algorithm. Very effective estimation of eddy viscosity profiles is shown to be achieved even when the amount of data is quite small.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...