Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 2981-2996 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A broad class of engineering problems in fracture mechanics, thermal/fluid transport and electromagnetic theory involve the evaluation of two-dimensional finite part integrals of the form A method for evaluation of such integrals is developed by deriving an equivalent integral using Fourier transformation. This equivalent integral does not involve a kernel with singular behaviour. Consequently, standard numerical integration methodologies with conventional analytical evaluation techniques can be used in the finite element computations. The accuracy and convergence of the developed numerical procedure are successfully demonstrated by numerical examples for planar fracture geometries.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 1037-1062 
    ISSN: 0271-2091
    Keywords: Eccentric cylinders ; Fluid convection ; Rotation ; Low-Prandtl-number fluids ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Numerical experiments are performed to study rotational effects on the mixed convection of low-Prandtlnumber fluids enclosed between the annuli of concentric and eccentric horizontal cylinders. The inner cylinder is assumed to be heated and rotating. The rotational Reynolds number considered is in the range where the effect of Taylor vortices is negligible. The Prandtl number of the fluid considered is in the range 0·01-1·0. The Rayleigh number considered is up to 106. A non-uniform mesh transformation technique coupled with the introduction of ‘false transient’ parameters to the vorticity and streamfunction-vorticity expressions was used to solve the governing set of equations. Results show that when the inner cylinder is made to rotate, the multicellular flow patterns observed in stationary cylindrical annuli subside in a manner depending on the Prandtl number of the fluids. Eventually the flow tends toward a uniform flow similar to that of a solid body rotation. For a fixed Rayleigh number and with a Prandtl number of the order of 1·0, when the inner cylinder is made to rotate, the mean Nusselt number is observed to decrease throughout the flow. For lower Prandtl number of the order 0·1-0·01 the mean Nusselt number remained fairly constant when the inner cylinder was made to rotate. The mean Nusselt numbers obtained were also compared with available data from other investigators.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 161-179 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A set of field equations, the associated finite element model formulations and numerical methodology for thermomechanical response evaluations of fluid-saturated media under finite deformation have been presented in Part I of the companion manuscript.1 In this paper, the formulations and methodologies are initially validated through benchmark model comparisons prior to constitutive model sensitivity analysis and subsequent thermomechanical response determination. The responses for the testbed problems, using the developed solution algorithm, compare favourably with the reported results. The response investigations for complex geomechanical problems illustrate the general applicability of the developed finite element model simulator in predicting the long-term thermal, pore pressure, displacement and stress responses of fluid-saturated porous media subjected to thermomechanical loading, as encountered in nuclear waste management scenarios. The presented formulations and numerical procedures can also be used to investigate a wide range of engineering problems involving hygrothermomechanical response prediction.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 147-160 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The coupled thermomechanical responses of fluid-saturated porous continua subjected to finite deformation are investigated. Field equations governing the transient response of the media are derived from a continuum thermodynamics mixture theory based on mass balance, momentum balance and energy balance laws as well as the Clausius-Duhem inequality. Finite element procedures for the two-dimensional response, employing updated Lagrangian formulations for the solid skeleton deformation and the weak formulations for fluid and thermal transport equations, are implemented in a fully implicit form. Temperature-dependent mechanical properties for the non-linear solid matrix, characterized by Perzyna's viscoplastic model, are assumed. An iterative scheme based on the full Newton-Raphson method is presented for simultaneously solving the coupled non-linear equations.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 747-763 
    ISSN: 0271-2091
    Keywords: Pressure transient ; Variable wave speed ; Air entrainment ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In pumping installations such as sewage pumping stations, where gas content and air entrainment exist, the computation of fluid pressure transients in the pipelines becomes grossly inaccurate when constant wave speed and constant friction are assumed. A numerical model and computational procedure have been developed here to better compute the fluid pressure transient in a pipeline by including the effects of air entrainment and gas evolution characteristics of the transported fluid. Free and dissolved gases in the fluid and cavitation at the fluid vapour pressure are modelled. Numerical experiments show that entrained, entrapped or released gases amplify the pressure peak, increase surge damping and produce asymmetric pressure surges. The transient pressure shows a longer period for down-surge and a shorter period for up-surge. The up-surge is considerably amplified and the down-surge marginally reduced when compared with the gas-free case. These observations are consistent with the experimental observations of other investigators. Numerical experiments also show that the use of a variable loss factor in the pressure transient analysis produces marginally higher maximum and lower minimum pressure transients when compared with the constant-loss-factor model for pipelines where the pressures are above the fluid vapour pressure.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 1113-1126 
    ISSN: 0271-2091
    Keywords: Constrictions ; Recirculation ; Vorticity ; Streamline ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The flow fields in the neighbourhood of double constrictions in a circular cylindrical tube were studied numerically. The effects on the streamline, velocity and vorticity distributions as the flow passes through the constrictions in the tube were studied in the Reynolds number range 5-200. Double constrictions with dimensionless spacing ratios of 1, 2, 3 and ∞ were studied for a 50% constriction.It is noted that when the Reynolds number is below 10, no recirculation region is formed in the above constricted flow. For Reynolds numbers greater than 10, a recirculation region forms downstream of each of the constrictions. For constriction spacing ratios of 1, 2, and 3, when the Reynolds number is high, a recirculation region spreads between the valley of the constrictions. The recirculation region formed between the two constrictions has a diminishing effect on the generation of wall vorticity near the second constriction area. In general, the peak value of wall vorticity is found slightly upstream of each of the constrictions. When the Reynolds number is increased, the peak wall vorticity value increases and its location is moved upstream. Maximum wall vorticity generated by the first constriction is found to be always greater than the maximum wall vorticity generated by the second constriction. The extent of this spreading of the recirculation region from the first constriction and its effects on the second constriction depend on the constriction spacing ratio and the flow Reynolds number.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 289-305 
    ISSN: 0271-2091
    Keywords: pulsatile flow ; ring-type constriction ; laminar pipe flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Numerical simulations have been carried out to study pulsatile laminar flows in a pipe with an axisymmetric ringtype constriction. Three types of pulsatile flows were investigated, namely a physiological flow, a pure sinusoidal flow and a non-zero mean velocity sinusoidal flow. The laminar flow governing equations were solved by the SIMPLE algorithm on a non-staggered grid and a modified Crank-Nicolson approximation was used to discretrize the momentum equations with respect to time. The maximum flow Reynolds numer (Re) is 100. The Womersley number (Nw) ranges from 0 to 50, with the corresponding Strouhal number (St) ranging from 0 to 3·98. The constriction opening ratio (d/D) and thickness ratio (h/D) are fixed at 0·5 and 0·1 respectively. Within the time period investigated, all these pulsatile flows include both forward and backward flows. The unsteady recirculation region and the recirculation points change in size and location with time. For Nw ≤ 1 and St≤ 1·56 x 10-3 the three pulsatile flows have the same simple relation between the instantaneous flow rate and pressure loss (Δp) across the constriction and the pressure gradient in the axial direction (dp/dz) in the fully developed flow region. The phase angles between the flow rate and pressure loss and the pressure gradient are equal to zero. With increasing Nw and St, the phase angle between the flow rate and the dp/dz becomes larger and has its maximum value of 90° at Nw = 50 and St = 3·98. The three pulsatile flows also show different relations between the flow rate and the pressure gradient. The pure sinusoidal flow has the largest maximum pressure gradient and the non-zero mean velocity sinusoidal flow has the smallest. For larger Nw and St the fully developed velocity profiles in the fully developed flow region have a smaller velocity gradient along the radial direction in the central region. The maximum recirculation length increases for Nw ranging from 0 to 4·2, while this length becomes very small at Nw = 50 and St = 3·98. The deceleration tends to enlarge the recirculation region and this effect appears for Nw ≥ 3 and St ≥ 1·43×10-2. Linear relations exist between the flow rate and the instantaneous maximum values of velocity, vorticity and shear stress.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 89-103 
    ISSN: 0271-2091
    Keywords: Air entrainment ; Pressure surges ; Wave speed ; Pumping installations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In pumping installations such as sewage pumping stations, where gas content and air entrainment exist, the computation of fluid pressure transients in pipelines becomes grossly inaccurate when a constant wave speed is assumed. An accurate numerical model with gas release and absorption has been developed in this paper and used to compute the fluid pressure transients in the pumping mains of selected pumping installations. Free and dissolved gases in the transported fluid and cavitation at vapour pressure are also modelled. When compared with the gas-free case, computations show that entrained, entrapped or released gases amplify the positive pressure peak, increase surge damping and produce asymmetric pressure surges. While the upsurge with air entrainment in the pipelines was considerably amplified, the downsurge was only marginally reduced. The computed results show good agreement with the data available.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 337-348 
    ISSN: 0271-2091
    Keywords: air entrainment ; pressure surges ; pumping system ; check valve slamming ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Recent numerical investigations on pressure surges during pump trip in pumping installations showed that by including an air entrainment variable wave speed model, reasonable predictions of transient pressure surges with proper phasing and attenuation of pressure peaks can be obtained. These calculated results are consistent with similar field measurements made with the pumps operating at low pump cut-out levels, when air entrainment due to an attached surface vortex was observed. However, in the numerical calculation procedures it is assumed that the inertia of the moving elements of the check valve is small and that the check valve closes at zero reverse flow velocity. In practice, check valves seldom close precisely at zero reverse flow velocity. With the check valves not closing at zero reverse velocity, the present numerical computations show that the air content in a fluid system can adversely affect the check valve performance. With the fluid system operating within a critical range of air entrainment values, the present analysis showed that there is a possibility of ‘check valve slamming’ when the check valves are selected based only on the analysis of an air-free system. This phenomenon is confirmed through field observations.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...