Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Glucose electrode ; Isolated tubule ; Glucose reabsorption ; Enzyme electrode ; Glucose oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The design and the application of a micro-enzyme-electrode for continuous monitoring of glucose concentration in the isolated tubule preparation is described. The principle of the electrode is the amperometric detection of hydrogen peroxide, which is a product of the oxidation ofd-glucose by glucose oxidase immobilized at the tip of a micro-electrode. The resulting current causes a voltage deflection across a resistor in series with the electrode that is correlated directly with the glucose concentration. The electrode response to glucose is almost linear over the concentration range from 0 to 12 mmol/l with a slightly diminished slope in the higher range. Other sugars (12 mmol/l raffinose, galactose, fructose, sucrose, mannitol), pH (from 6.5 to 8.0) andpCO2 (from 1 to 10 kPa) do not influence the reading. A reduction ofpO2 in the test solution to 1 kPa blunts the reading. Raising the temperature from 20°C to 40°C leads to a pronounced increase of the voltage deflection at a given glucose concentration. Interference is observed with strongly reducing agents such asl-cysteine, ascorbic acid and uric acid. At defined conditions the electrode is well suited to measure continuously glucose concentration in the luminal fluid at the collection site of the isolated perfused tubule of the kidney. Experiments are presented which illustrate the performance of the glucose electrode in this isolated tubule set-up. Peritubular reduction of potassium concentration or the application of ouabain diminish glucose reabsorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: K+ channel ; intracellular pH ; Na+-K+ ATPase ; patch-clamp ; amphibian kidney ; aldosterone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide. We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+. Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS. Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH. These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...