Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Excitability  (1)
  • Hydrogen peroxide  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Free Radical Biology and Medicine 7 (1989), S. 3-8 
    ISSN: 0891-5849
    Keywords: Free radicals ; Hippocampal slice ; Hydrogen peroxide ; LTP ; Memory ; Oxygen intermediates ; Paired pulse facilitation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1438-2199
    Keywords: Pressure ; Excitatory amino acids ; GABA ; Hippocampal slice ; Synaptic transmission ; Excitability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Epileptic-like activities are observed in mammals exposed to ambient pressures higher than 20 atm. These symptoms are part of the so called “high pressure nervous syndrome”. In the search of the cellular mechanisms of this syndrome, we examined synaptic and intrinsic pressure-induced changes in the in vitro hippocampal slice preparation in the rat. We found that pressure (80 atm) depresses the efficiency of excitatory amino acidergic and inhibitory GABA synaptic transmissions, while it increases the intrinsic excitability of the CA1 pyramidal cells and induced multiple population spikes. The changes were associated with a selective increase in the effects of NMDA andL-homocysteate, while the postsynaptic effects of GABA was unchanged. NMDA antagonists and GABA synergistic drugs antagonized the pressure-induced hyperexcitability and multiple population spikes. These results suggest that pressure would decrease transmitter release at the tested excitatory and inhibitory synapses and would facilitate NMDA postsynaptic mechanisms. Thus, changes in both NMDA and GABA processes might be involved in the development of the high pressure nervous syndrome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...