Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-041X
    Keywords: Extracellular matrix ; Dermal-epidermal interactions ; Skin ; Hair morphogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The distribution of various extracellular matrix components was studied in frozen sections of embryonic (14–18 days) and early postnatal (birth and 4 days post parturn) dorsal mouse skin using monospecific antibodies and indirect immunofluorescence. Basement membrane zone components — type IV collagen, laminin and heparan sulphate proteoglycan — were found to be uniformly and unchangingly distributed along the dermal-epidermal junction. In contrast, the distribution of interstitial matrix components — types I and III collagen, and fibronectin — was heterogeneous and varied with the stages of hair development. Collagens became sparse and were eventually completely removed from the prospective dermal papilla and from a one-cell-thick sheath of dermal cells around hair buds. They remained absent from the dermal papilla throughout hair organogenesis. Fibronectin was always present around dermal papilla cells and was particularly abundant along the dermal-epidermal junction of hair rudiments, as well as underneath hair buds. In contrast, in interfollicular skin, collagens accumulated in increasing density, while fibronectin became progressively sparser. It thus appears that interstitial collagens and fibronectin are distributed in a manner which is related to hair morphogenesis. In morphogenetically active regions, collagen density is low, while that of fibronectin is high. Conversely, in histologically stabilized zones, collagen is abundant and fibronectin is sparse. This microheterogeneous distribution of interstitial collagens and of fibronectin might thus constitute part of the morphogenetic message that the dermis is known to transmit to the epidermis during the development of skin and of cutaneous appendages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-041X
    Keywords: Glycosaminoglycans ; Fibronectin ; Microinjection ; Gastrulation ; Chicken
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A method utilizing microinjection of glycosaminoglycan-degrading enzymes in the chicken blastoderm prior to embryo culture and immunostaining for fibronectin have been applied to demonstrate an interaction between glycosaminoglycans and fibronectin in the basement membrane of the epiblast. Fixation of tissue in a mixture of formaldehyde and cetylpyridinium chloride allows detection of fibronectin only in those zones of the embryo that are not colonized by mesoblast cells. The epithelial-mesenchymal interface thus remains unstained. After degradation of glycosaminoglycans in the living organism, it is shown that this particular site, in fact, also contains fibronectin that is masked in vivo by, at least, hyaluronate. This interaction between both compounds is, during gastrulation, constantly correlated with mesoblast migration. Since previous studies have shown that the degradation of hyaluronate determines the behaviour of mesoblast cells, it is proposed that remodelling of the interaction between these compounds is necessary for mesoblast migration to occur.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...