Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 296 (1999), S. 199-212 
    ISSN: 1432-0878
    Keywords: Key words Myogenesis ; Differentiation ; bHLH ; Transcription factors ; MADS-box transcription factors ; pax genes ; Cell migration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The skeletal body muscle of vertebrates is derived from segmentally arranged mesodermal structures, the somites. Only the dorsal epithelial half of the somite, the dermomyotome, gives rise to muscle cells during normal development. Head muscle takes its origin from the somites, the unsegmented paraxial head mesoderm and the prechordal mesoderm. Some muscle precursor cells, for instance those for limb and tongue muscle, migrate over considerable distances before differentiating at their target sites. In recent years, our understanding of the molecular events underlying myogenesis has increased considerably. Muscle differentiation is preceded by several steps during which precursor cells are specified. Markers of myogenic specification are myf5, myoD, mrf4 and myogenin, which encode transcription factors of the basic helix-loop-helix family. These factors bind to promoters of many muscle-specific genes and interact with MEF2 (myocyte enhancer binding factor-2) belonging to the MADS (MCM1, agamous, deficiens, serum response factor) box transcription factors. Signalling events leading to myogenic precursor cell specification and to the formation of muscle fibres are being elucidated. Inductive signals emanate from the neural tube, notochord and ectoderm. Controversial findings concerning the role of the notochord and neural tube in muscle development suggest that the epigenetic events leading to myogenesis are more complex than originally anticipated. Signals from the lateral plate counteract those from the axial organs and induce the locally restricted emigration of muscle precursor cells. Future investigations will have to show how signalling molecules and their receptors interact in the process of fine-tuning muscle formation in the embryo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Trisomy 18 (Edwards' syndrome) ; Trisomy 21 (Down's syndrome) ; Nuchal oedema ; Extracellular matrix ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract We have investigated histologically the elevations of the skin in dorsal and lateral neck (nuchal) regions of human fetuses carrying karyotypes of trisomy 18 (Edwards' syndrome) and trisomy 21 (Down's syndrome). Cavities filled with interstitial fluid were found in the dermis, epidermal basement membrane and occasionally in the epidermis of trisomy-18 fetuses, but were not delineated by an epithelium or basement membrane as judged by the absence of immunostaining for laminin, collagen IV and collagen VII. Dilated vessels were also found at the interface between dermis and subcutis. Neither normal fetal skin nor that of trisomy-21 fetuses contained cavities or dilated vessels. In order to detect possible alterations of the extracellular matrix in trisomy-18 and trisomy-21 skin, the distribution of glycoproteins, glycosaminoglycans and proteoglycans was studied immunohistochemically. In trisomy-21 and control skin, the dermis stained intensely for fibronectin, whereas the subcutis reacted only weakly. In trisomy-18 skin, the stronger staining for fibronectin appeared in the subcutis, and the prevailing collagen type was collagen III, collagen type I being absent. In the skin of trisomy-21 fetuses, collagen VI was more irregularly arranged and densely packed, whereas collagen I was more widely spaced than in normal fetuses. More hyaluronan was present in the dermis and subcutis of trisomy-21 fetuses than in that of trisomy-18 and control fetuses. A correlation seems to exist between undelimited cavities and collagen III in trisomy-18 skin, and between hyaluronan and the specific arrangement of collagen in trisomy-21 skin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Key words: Trisomy 18 (Edwards' syndrome) ; Trisomy 21 (Down's syndrome) ; Nuchal oedema ; Extracellular matrix ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. We have investigated histologically the elevations of the skin in dorsal and lateral neck (nuchal) regions of human fetuses carrying karyotypes of trisomy 18 (Edwards' syndrome) and trisomy 21 (Down's syndrome). Cavities filled with interstitial fluid were found in the dermis, epidermal basement membrane and occasionally in the epidermis of trisomy-18 fetuses, but were not delineated by an epithelium or basement membrane as judged by the absence of immunostaining for laminin, collagen IV and collagen VII. Dilated vessels were also found at the interface between dermis and subcutis. Neither normal fetal skin nor that of trisomy-21 fetuses contained cavities or dilated vessels. In order to detect possible alterations of the extracellular matrix in trisomy-18 and trisomy-21 skin, the distribution of glycoproteins, glycosaminoglycans and proteoglycans was studied immunohistochemically. In trisomy-21 and control skin, the dermis stained intensely for fibronectin, whereas the subcutis reacted only weakly. In trisomy-18 skin, the stronger staining for fibronectin appeared in the subcutis, and the prevailing collagen type was collagen III, collagen type I being absent. In the skin of trisomy-21 fetuses, collagen VI was more irregularly arranged and densely packed, whereas collagen I was more widely spaced than in normal fetuses. More hyaluronan was present in the dermis and subcutis of trisomy-21 fetuses than in that of trisomy-18 and control fetuses. A correlation seems to exist between undelimited cavities and collagen III in trisomy-18 skin, and between hyaluronan and the specific arrangement of collagen in trisomy-21 skin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...