Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 11-27 
    ISSN: 0271-2091
    Keywords: finite elements ; liquid crystal ; nematic ; anisotropic ; electro rheological ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The orientation tensor L is introduced to construct a modified Leslie-Ericksen model for the viscous, incompressible flow of anisotropic suspensions (including electric field effects). This is then utilized to develop a weak variational formulation and finite element scheme for computing the flow and orientation fields. Numerical results are presented for exploratory test problems.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 1421-1440 
    ISSN: 0271-2091
    Keywords: parallel ; conjugate gradient ; least squares ; FEM ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this study we consider parallel conjugate gradient solution of sparse systems arising from the least-squares mixed finite element method. Of particular interest are transport problems involving convection. The least-squares approach leads to a symmetric positive system and the conjugate gradient scheme is directly applicable. The scheme is applied to both the convection-diffusion equation and to the stationary Navier-Stokes equations. Here we demonstrate parallel solution and performance studies for a representative MIMD parallel computer with hypercube architecture. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 87-97 
    ISSN: 0271-2091
    Keywords: Periodic ; Unsteady ; Viscous flow ; Finite elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A double-transform technique provides a semi-analytic solution in the form of a series expansion for unsteady axisymmetric Stokes flow in the entrance region of a semi-infinite rigid cylindrical tube. This in turn offers an appropriate bench-mark problem for evaluating the quality of numerical approximations. To illustrate this, periodic axial flow in a circular cylinder is considered. Some aspects of the bench-mark problem that are of interest include the reverse flow in the wall layers, the accuracy of the approximate method in different flow regimes and the mesh grading. This bench-mark problem and the numerical study provide some insight into practical issues pertinent to the approximate solution of unsteady and periodic flows.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...