Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; pyruvate dehydrogenase ; control of gene expression ; PDA1 ; GCN4 ; chromosome V ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The location and sequence of the PDA1 gene, encoding the E1α subunit of the pyruvate dehydrogenase (PDH) complex from Saccharomyces cerevisiae, were determined. The PDA1 gene was located on a 6·2 kb fragment of chromosome V, approximately 18 kb centromere distal to RAD3. Consistent with this, the PDA1 gene was genetically mapped at 4 cM from RAD3. A part of the 6·2 kb fragment of chromosome V was sequenced. The nucleotide sequence contained the PDA1 open reading frame and the entire putative promoter. Computer analysis revealed a putative GCN4 binding motif in the PDA1 promoter. The presence of transcriptional elements was experimentally determined by deletion analysis. To this end, ExoIII deletions were constructed in the 5′ to 3′ direction of the PDA1 promoter and effects on transcription were determined by Northern analysis. Transcription was unaffected upon deletion to position - 190 relative to the ATG start codon. Deletions from position - 148 and beyond, however, reduced promoter activity at least 40-fold. Apparently the 42 bp between nucleotides - 190 and - 148 contain an element essential for transcription. Inactivation of the PDA1 promoter could not be attributed to deletions of a recognizable TATA element or any known yeast regulatory motifs. The possible role of the CCCTT sequence present in the 42 bp region and also in the promoters of the other genes encoding subunits of the PDH complex is discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 11 (1995), S. 735-745 
    ISSN: 0749-503X
    Keywords: Flocculation ; FLO1 ; FLO5 ; FLO8 ; genetic map ; physical map ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In the yeast Saccharomyces cerevisiae three dominant flocculation genes, FLO1, FLO5 and FLO8 have been described. Until now only the FLO1 gene, which is located at chromosome I, has been cloned and sequenced. FLO5 and FLO8 were previously localized at chromosomes I and VIII respectively (Vezinhet, F., Blondin, B. and Barre, P. (1991). Mapping of the FLO5 gene of Saccharomyces cerevisiae by transfer of a chromosome during cytoduction. Biotechnol. Lett. 13, 47-52; Yamashita, I. and Fukui, S. (1983). Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLO8 in the yeast Saccharomyces. Agric. Biol. Chem. 47, 2889-2896). This was not in agreement with our results. Here, we report the location of FLO5 and FLO8 on chromosomes VIII and I respectively.By induced chromosome loss and genetic mapping, the FLO5 gene was localized at the right end of chromosome VIII approximately 34 cM centromere distal of PET3. This is part of the region that is present both at chromosome I and chromosome VIII. The location of FLO5 in this area of chromosome VIII made it necessary to re-evaluate the localization of FLO8, which was previously thought to occur in this region. Both genetic and physical mapping showed that FLO8 is allelic to FLO1. Hence, there are only two known dominant flocculation genes, FLO1 and FLO5.Analysis of the nucleotide sequence of chromosome VIII of a non-flocculent strain revealed an open reading frame encoding a putative protein that is approximately 96% identical to the Flo1 protein.This suggests that both dominant flocculation genes encode similar, cell wall-associated, proteins with the same function in the flocculation mechanism.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...