Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of infrared and millimeter waves 14 (1993), S. 1727-1753 
    ISSN: 1572-9559
    Keywords: Far-infrared (FIR) ; spectra ; methanol ; CD3OH ; torsion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Fourier transform far-infrared (FTFIR) spectrum of CD3OH has been obtained from 40–220 cm−1 at a resolution of 0.002 cm−1, and partially analyzed. Numerousb-type branches have been assigned in the spectrum, ranging over torsional states fromn=0 to 3. The branches have been fitted toJ(J+1) power-series energy expansions in order to obtainJ-independent branch origins. These in turn have been fitted to the torsion-rotation Hamiltonian, and improved molecular constants have been obtained for the ground vibrational state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of infrared and millimeter waves 21 (2000), S. 1061-1083 
    ISSN: 1572-9559
    Keywords: infrared (IR) spectra ; methanol ; CD3OH ; torsion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Fourier transform infrared (FTIR) spectrum of the CO-stretching fundamental band of CD3OH has been recorded at a resolution of 0.002 cm-1. Assignments are reported for 35 subbands in the n = 0 ground torsional state, covering K = 0 to 9 for all torsional symmetries plus K = 10 A, and 12 assorted A and E subbands in the n = 1 first excited torsional state ranging from K = 0 up to K = 5. The subband wavenumbers have been fitted to J(J + 1) power-series energy expansions to obtain subband origins and a compact representation of the spectral observations. With the use of known ground-state energies, CO-stretch energy term values have been determined and tabulated. Least-squares fitting of the subband origins to a fourth-order Hamiltonian model for the CO-stretch mode is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...