Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1351
    Keywords: Key words Locomotor activity ; Feeding-entrainment ; Circadian rhythms ; Vertical distribution ; Goldfish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Periodic food availability can act as a potent zeitgeber capable of synchronizing many biological rhythms in fishes, including locomotor activity rhythms. In the present paper we investigated entrainment of locomotor rhythms to scheduled feeding under different light and feeding regimes. In experiment 1, fish were exposed to a 12:12 h light/dark cycle and fed one single daily meal in the middle of the light phase. In experiment 2, we tested the effect of random versus scheduled feeding on the daily distribution of activity. During random feeding, meals were randomly scheduled with intervals ranging from 12 to 36 h, while scheduled feeding consisted of one single daily meal set in the middle of the light or dark phase. Finally, in experiment 3, we studied the synchronization of activity rhythms to feeding under constant darkness (DD) and after shifting the feeding cycle by either advancing or delaying the feeding cycle by 9 h. The results revealed that goldfish synchronized to feeding, overcame light entrainment and significantly changed their daily distribution of activity according to their feeding schedule. In addition, the daily activity pattern modulated by feeding differed between layers: a peak of activity being noticeable directly after feeding at the bottom, while an anticipatory behaviour was obvious at the surface of the tank. Under DD and no food, free-running rhythms averaging 25.5 ± 1.9 h (mean ± SD) were detected. In conclusion, some properties of feeding entrainment (e.g. anticipation of the feeding time, free-running rhythms following termination of periodic feeding, and the stability of ø after shifting the feeding cycle) suggested that goldfish have (a) separate but tightly coupled light- and food-entrainable oscillators, or (b) a single oscillator that is entrainable by both light and food (one synchronizer being eventually stronger than the other).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 167 (1997), S. 409-415 
    ISSN: 1432-136X
    Keywords: Key words Melatonin ; Pineal ; Eye ; Feeding behaviour ; Daily rhythms ; Dual phasing ; Sea bass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Melatonin is regarded as an internal zeitgeber, involved in the synchronization to light of the daily and seasonal rhythms of vertebrates. To date, plasma and ocular melatonin in fish have been extensively surveyed almost solely in freshwater species – with the exception of some migrating species of salmonids. In the present paper, melatonin levels of a marine species (sea bass, Dicentrarchus labrax L) were examined. In addition, the daily rhythms of the demand-feeding activity of sea bass, a fish species characterized by a dual phasing capacity (i.e. the ability to switch between diurnal and nocturnal behaviour), were investigated before sampling. Sea bass, distributed in 12 groups of four fish and kept under constant water temperature and salinity, were exposed to a 12 h light:12 h dark cycle (200:0 lx, lights on at 0800 hours). After 4 weeks recording, the animals were killed at 0900, 1200, 1400, 1600, 1900, 2100, 2400, 0200, 0400, 0700 and 0900 hours. Actograms of demand-feeding records revealed a nocturnal feeding behaviour, with some cases of spontaneous inversions in phasing. Melatonin levels in plasma peaked in the middle of the dark phase, dropping after lights on. Melatonin in the eye, on the contrary, exhibited an inverse profile, with high levels during daytime and low levels at night. These results suggest that melatonin in the plasma and the eye may act independently on the flexible circadian system of sea bass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...