Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Field potentials  (1)
  • Strength-duration relations  (1)
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Key words Visual cortex ; Slice ; Field potentials ; Current source density ; Latency
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  Much is known about the anatomy of corticocortical connections, yet little is known concerning their physiology. In order to have access to the synaptic and temporal aspects of the activity elicited through corticocortical connections, we developed an in vitro approach on slices of rat visual cortex. We used extracellular recordings of field potentials combined with electrical stimulation to localise regions of areas 17 and 18a that are connected. We found that corticocortical connections between areas 17 and 18a can be preserved in 500 μm thick slices, with a focus of activity separated from the stimulating electrode by 1.5 mm to more than 3 mm. The potentials elicited in one area after stimulation of its neighbour displayed fast events, corresponding to action potentials, and slow events, corresponding to synaptic potentials. Intracellular recordings showed that the earliest synaptic responses consisted of monosynaptic excitatory potentials. Measurement of response latency showed that axons involved in both feedforward and feedback corticocortical connections are slowly conducting (0.3–0.8 m/s). Conduction velocity for antidromically activated cells was not significantly different for the two sets of connections. In an attempt to establish the spatial organisation of functional synaptic inputs, field potential recordings were performed in the different cortical layers and used to establish current source density (CSD) graphs along the depth axis. The CSD maps obtained were found to be somewhat variable from one case to another. It is suggested that this variability results from the use of electrical stimulation, which activates axons that are both afferent and efferent to a given cortical area. The field potentials are therefore likely to contain responses that correspond to the activity mediated by the intrinsic collaterals mixed in variable amount with responses produced by corticocortical synapses. With this restriction in mind, it is suggested that, after stimulation of the supragranular layers, the functional synaptic inputs of feedforward connections are concentrated in layer 4 and the bottom of layer 3, while those of feedback axons involve mainly the upper part of the supragranular layers. The intrinsic collaterals of the neurones participating in corticocortical connections seem also to provide the bulk of their inputs to the upper part of the supragranular layers. The laminar pattern of activity obtained after infragranular layer stimulation was comparable to that obtained after supragranular layer stimulation, except for the addition of a supplementary region of activated synapses in the infragranular layers.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 118 (1998), S. 477-488 
    ISSN: 1432-1106
    Schlagwort(e): Key words Visual cortex ; Brain slice ; Strength-duration relations ; Conduction velocity ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  Extracellular electrical stimulation of the gray matter is often used to determine the function of a given cortical area or pathway. However, when it is used to elicit postsynaptic effects, the presynaptic neuronal elements activated by electrical stimulation have never been clearly identified: it could be the excitable dendrites, the cell body, the axon initial segment, or the axonal branches. To identify these elements, we performed two series of experiments on slices of rat visual cortex maintained in vitro. The first series of experiments, reported in this paper, was aimed at determining the chronaxie, a temporal parameter related to the membrane properties of the neuronal elements. In order to identify the presynaptic elements that were activated by extracellular electrical stimulation, chronaxies corresponding to postsynaptic responses were measured and compared with those corresponding to the activation of axons (antidromic activation) and those corresponding to the activation of cell bodies (intracellular current injection in intracellularly recorded neurons). The chronaxie for orthodromic activation was similar to that for axonal activation, but was 40 times smaller than the chronaxie for direct cell body activation. This suggests that, whenever a postsynaptic response is elicited after electrical stimulation of the cortical gray matter, axons (either axonal branches or axon initial segments), but not cell bodies, are the neuronal elements activated.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...