Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Flounder, (Pseudopleuronectes americanus)  (1)
  • Membrane transport  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 163 (1993), S. 581-586 
    ISSN: 1432-136X
    Keywords: Ion transport ; Membrane transport ; Intestine ; K secretion ; Flounder, (Pseudopleuronectes americanus)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Enterocytes from the winter flounder (Pseudopleuronectes americanus) were isolated by collagenase digestion and maintained in flounder Ringer's solution. Whole cell currents were studied using the amphotericin-perforated whole-cell patch clamp technique. The mean resting membrane potential and capacitance values or dissociated cells were-45±7 mV and 5±0.4 pF, respectively. Enterocytes held at-20 mV and treated with 1 μmol·l-1 ionomycin exhibited outward currents when cells were stepped through a series of voltages from-60 to +110 mV. The reversal potential of this current in flounder Ringer's solution was-55 mV and the voltage at which half-maximal activation occurred was +20 mV. Voltage-dependent inhibition of outward current was observed at +60 mV and above. When cells were bathed in symmetric K Ringer's solution the reversal potential shifted to zero mV and no inhibition of current was observed at voltages between-60 and 140 mV. When the holding potential of the cell was changed from-20 to-80 mV and stepped from-60 to +110 mV, a second [previously characterized, O'Grady et al. (1991)] K current with delayed-rectifier properties was identified. This observation demonstrated that the delayed rectifier K channel and the Ca2+-activated K channel described in this study exist in the same cell. Extracellular addition of 2 mmol·l-1 Ba2+ to cells bathed in symmetric K Ringer's solution resulted in nearly complete inhibition of outward current. Charybdotoxin produced only minor effects on this current. Addition of 8-Br cGMP to the bathing solution also inhibited outward current and this effect could be partially reversed following washout of 8-Br cGMP from the bathing solution. The results of this study indicated that a Ca2+-activated K conductance in winter flounder enterocytes is potentially inhibited by agents that increase intracellular cGMP. A similar effect of cGMP on a delayed rectifier K channel in flounder enterocytes was previously demonstrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...