Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Food intake ; Locomotor activity ; Fenfluramine ; Clorgyline ; Long-term ; Suppression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Administration of fenfluramine to rats produced decreases in 1-h food intake and locomotor activity. Short-term (2–6 days) or long-term (21–25 days) treatment with the monoamine oxidase (MAO) type A inhibiting antidepressant clorgyline potentiated fenfluramine-induced suppression of food intake but did not affect fenfluramine-induced suppression of locomotor activity. Although daily (4 h) food intake was not significantly less in clorgyline-treated animals relative to saline-treated controls, body weight gain was significantly less in clorgyline-treated animals relative to controls. These findings demonstrate a differential effect of clorgyline treatment on fenfluramine-induced suppression of food intake and locomotor activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: 1-m-Chlorophenylbiguanide ; MDL-72222 ; Ondansetron ; Temperature ; Food intake ; Locomotor activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study investigated three physiologic functions known to be modulated by serotonin — temperature, food intake and locomotor activity — using the 5-HT3 receptor agonist,m-chlorophenylbiguanide (m-CPBG), and two 5-HT3 antagonists, MDL-72222 and ondansetron. m-CPBG produced dose-dependent elevations in rectal temperature. MDL-72222, which had no effects on temperature when given alone, significantly attenuated m-CPBG-induced hyperthermia. Food intake in food-deprived rats was reduced during the first hour by the highest dose of m-CPBG. Food intake was also dose-dependently reduced by MDL-72222; m-CPBG plus MDL-72222 led to greater reductions in food intake. Food intake in freely fed rats was unaffected by m-CPBG or MDL-72222. Locomotor activity was unaffected by m-CPBG, but was dose-dependently reduced by MDL-72222, an effect which may have contributed to its hypophagic effects. Ondansetron, used in ten-fold lower doses than MDL-72222, was inactive in all of these paradigms. These data: (1) provide some evidence for 5-HT3 receptor-mediated changes in temperature; (2) are in agreement with two prior studies which reported locomotor activity reductions following 5-HT3 antagonists; but (3) do not support an important role for 5-HT3 receptors in the regulation of food intake in rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1463
    Keywords: Benzylamine ; dopamine ; serotonin ; genetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neural transmission 100 (1995), S. 53-61 
    ISSN: 1435-1463
    Keywords: Deprenyl (selegiline) ; MPTP ; MPP+ ; Parkinson's disease ; dopamine ; substantia nigra ; nigrostriatal neuron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intranigral infusion of 1-Methyl-4-phenylpyridinium ion (MPP+, 2.1–16.8 nmol) dose-dependently injured nigral neurons as reflected by reduced dopamine levels in the ipsilateral striatum four days after the infusion of this toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Coadministration of deprenyl (4.2 nmol) with MPP+ into the substantia nigra protected against MPP+-induced moderate (20–50%) but not severe (over 70%) nigral injury as reflected in striatal dopamine reductions. However, supplementary treatment with deprenyl (0.25 mg/kg, s.c., twice daily for 4 days) after intranigral infusion of MPP+ significantly rescued nigral neurons from more severe damage caused by a higher MPP+ does (8.4 nmol) manifested by a lesser striatal dopamine decrease (−31%) compared to the non-deprenyl treated group (−70%). Thus, in addition to the blockade of bioactivation of MPTP, deprenyl can protect and/or rescue nigral neurons from MPP+-induced dopaminergic neurotoxicity. These in vivo data add further evidence to suggest that deprenyl, a putative and clinically unproven neuroprotective agent, may be of value in slowing the progressive nigral degeneration in “early” Parkinson's disease, but may prove to be less so in its terminal stages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...