Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 25 (1953), S. 1891-1898 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 27 (1955), S. 1190-1191 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 30 (1965), S. 1246-1247 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1494-1510 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The hot electron plasmas (Te〉2Ti) in Tore Supra (Equipe Tore Supra (presented by R. Aymar) in Plasma Physics and Controlled Nuclear Fusion Research [Proc. 12th Int. Conf., Nice, 1988 (IAEA, Vienna, 1989), Vol. 1, p. 9]) driven by fast wave electron heating (FWEH) are analyzed for thermal transport. Both neoclassical and anomalous transport processes are taken into account. The dominant power flow is through the electron channel of anomalous thermal diffusivity. The electron and ion temperature gradient driven instabilities are analyzed for a well documented discharge and shown to explain the diffusivities inferred from the steady state power balance analysis. The discharges are maintained in a quasi-steady state for periods up to 100 global energy replacement times. A large Tore Supra database is tested against two models for the turbulent electron thermal conductivity. Good correlation is obtained with an updated version of the collisionless skin depth formula. The electrostatic turbulence-based formula for electron temperature gradient (ETG) mode performs poorly in the core but well in the outer plasma. The electromagnetic turbulence theory based formula for ETG mode is benchmarked with the empirical Taroni–Bohm formula derived from Joint European Torus (JET) data. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1227-1245 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. We investigate the property of the ion temperature gradient (ITG) or ηi(ηi≡∂ ln Ti/∂ ln ni) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 2379-2394 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Transport processes and resultant entropy production in magnetically confined plasmas are studied in detail for toroidal systems with gyrokinetic electromagnetic turbulence. The kinetic equation including the turbulent fluctuations are double averaged over the ensemble and the gyrophase. The entropy balance equation is derived from the double-averaged kinetic equation with the nonlinear gyrokinetic equation for the fluctuating distribution function. The result clarifies the spatial transport and local production of the entropy due to the classical, neoclassical and anomalous transport processes, respectively. For the anomalous transport process due to the electromagnetic turbulence as well as the classical and neoclassical processes, the kinetic form of the entropy production is rewritten as the thermodynamic form, from which the conjugate pairs of the thermodynamic forces and the transport fluxes are identified. The Onsager symmetry for the anomalous transport equations is shown to be valid within the quasilinear framework. The complete energy balance equation, which takes account of the anomalous transport and exchange of energy due to the fluctuations, is derived from the ensemble-averaged kinetic equation. The intrinsic ambipolarity of the anomalous particle fluxes is shown to hold for the self-consistent turbulent electromagnetic fields satisfying Poisson's equation and Ampère's law. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1289-1307 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theoretical and computational study of the ion temperature gradient (ITG) and ηi instabilities in tokamak plasmas has been carried out. In a toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose a strong constraint on the drift mode fluctuations and the associated transport, showing self-organized criticality. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result of this, the temperature relaxation is self-similar and nonlocal, leading to radially increasing heat diffusivity. The nonlocal transport leads to Bohm-like diffusion scaling. Heat input regulates the deviation of the temperature gradient away from marginality. We present a critical gradient transport model that describes such a self-organized relaxed state. Some of the important aspects in tokamak transport like Bohm diffusion, near marginal stability, radially increasing fluctuation energy and heat diffusivity, intermittency of the wave excitation, and resilient tendency of the plasma profile can be described by this model, and these prominent features are found to belong to one physical category that originates from the radially extended nonlocal drift modes. The obtained transport properties and scalings are globally consistent with experimental observations of low confinement mode (L-mode) discharges. The nonlocal modes can be disintegrated into smaller radial islands by a poloidal shear flow, suggesting that the transport changes from Bohm-like to near gyro-Bohm. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3412-3419 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The impurity mode and ηi mode driven by impurity ions with outwardly peaked density profiles, near the boundary of tokamak plasmas, and the ion temperature gradient, respectively, are studied in high-temperature toroidal plasmas. The gyrokinetic theory is applied and finite Larmor radius effects of both hydrogenic and impurity ions are included. It is found that the impurity mode is enhanced by the ion temperature gradient. In addition, the impurity ions with outwardly peaked density profiles are demonstrated to have destabilizing effects on the ηi mode. These two modes are strongly coupled to each other so that it is impossible to distinguish between them when both the driving mechanisms are strong enough to drive the corresponding mode unstable independently. The correlation of the results with nonlinear simulations and the experimental observations are discussed. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 304-322 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Entropy production and Onsager symmetry in neoclassical transport processes of magnetically confined plasmas are studied in detail for general toroidal systems, including nonaxisymmetric configurations. It is found that the flux surface average of the entropy production defined from the linearized collision operator and the gyroangle-averaged distribution function coincides with the sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the Pfirsch–Schlüter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel current. It is proved from the self-adjointness of the linearized collision operator that the Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. The full transport coefficients for the banana-plateau and nonaxisymmetric parts are separately derived, and their symmetry properties are investigated. The nonaxisymmetric transport equations are obtained for arbitrary collision frequencies in the Pfirsch–Schlüter and plateau regimes, and it is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the Onsager symmetry. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2220-2228 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Turbulent momentum transport given by the Reynolds stress is considered as a candidate for explaining the production and sustainment of the mean shear flow in the high confinement "(H)'' mode. The fluctuation mechanism for the shear flow generation and transport reduction in the three-dimensional (3-D) multihelicity system is given. The profiles of the Reynolds stress, shear flow, and thermal flux in the 3-D case are compared with those in the two-dimensional (2-D) case. The Beklemishev–Horton theory for the anomalous transport which multiplies the 2-D transport by the density of distinct mode rational surfaces is found to overestimate the observed flux due to the disappearance of a subset of modes on certain rational surfaces. The mixing-length theory, in which the anomalous transport is independent of the density of mode rational surfaces, underestimates the thermal flux.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...