Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0541
    Keywords: Computational geometry ; Ray-shooting ; Triangulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract LetP be a simple polygon withn vertices. We present a simple decomposition scheme that partitions the interior ofP intoO(n) so-called geodesic triangles, so that any line segment interior toP crosses at most 2 logn of these triangles. This decomposition can be used to preprocessP in a very simple manner, so that any ray-shooting query can be answered in timeO(logn). The data structure requiresO(n) storage andO(n logn) preprocessing time. By using more sophisticated techniques, we can reduce the preprocessing time toO(n). We also extend our general technique to the case of ray shooting amidstk polygonal obstacles with a total ofn edges, so that a query can be answered inO(√ logn) time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 2 (1987), S. 541-558 
    ISSN: 1432-0541
    Keywords: Positive grip ; Grip selection ; Force/torque
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract We study the criteria under which an object can be gripped by a multifingered dexterous hand, assuming no static friction between the object and the fingers; such grips are calledpositive grips. We study three cases in detail: (i) the body is at equilibrium, (ii) the body is under some constant external force/torque, and (iii) the body is under a varying external force/torque. In each case we obtain tight bounds on the number of fingers needed to obtain grip. We also present efficient algorithms to synthesize such positive grips for bounded polyhedral/polygonal objects; the number of fingers employed in the grips synthesized by our algorithms match the above bounds. The algorithms run in time linear in the number of faces/sides. The paper may be of independent interest for its presentation of algorithms arising in the study of positive linear spaces.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...