Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 78 (1998), S. 231-235 
    ISSN: 1439-6327
    Keywords: Key wordsFatigue ; Sprint repetition ; Force-velocity ; Friction-loaded cycle ergometer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study investigated the mechanical changes induced by muscle fatigue caused by repeated sprints and determined whether a friction-loaded cycle ergometer has any advantages for assessing muscle fatigue. Nine subjects performed 15 sprints, each of 5 s with a 25-s rest, on a friction-loaded cycle ergometer. The averaged force, power and velocity of each push-off were calculated. Maximal power decreased by 17.9%, with a concomittent slowing of muscle contraction, but without any change in the maximal force. These results demonstrated that repeated sprints slow down muscle contraction, leading to a fall in maximal power without any loss of force. This would suggest that fast twitch fibres are selectively fatigued by repeated sprints. However, the ergometer used in the present study made it difficult to evaluate the relative influences of contraction velocity and sprinting time. This was certainly the most important limitation. On the other hand, it showed the advantage of measuring instantaneous power and total work dissipated in the environment simultaneously. It also permitted a force-velocity relationship to be obtained from a single sprint and this relationship is known to be closely related to the muscle fibre composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 77 (1998), S. 479-485 
    ISSN: 1439-6327
    Keywords: Key words Running economy ; Ventilation ; Mechanical work ; Step frequency ; Step variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The aim of the present study was to examine the physiological and mechanical factors which may be concerned in the increase in energy cost during running in a fatigued state. A group of 15 trained triathletes ran on a treadmill at velocities corresponding to their personal records over 3000m [mean 4.53 (SD 0.28) m · s−1] until they felt exhausted. The energy cost of running (C R) was quantified from the net O2 uptake and the elevation of blood lactate concentration. Gas exchange was measured over 1 min firstly during the 3rd–4th min and secondly during the last minute of the run. Blood samples were collected before and after the completion of the run. Mechanical changes of the centre of mass were quantified using a kinematic arm. A significant mean increase [6.9 (SD 3.5)%, P 〈 0.001] in C R from a mean of 4.4 (SD 0.4) J · kg−1 · m−1 to a mean of 4.7 (SD 0.4) J · kg−1 · m−1 was observed. The increase in the O2 demand of the respiratory muscles estimated from the increase in ventilation accounted for a considerable proportion [mean 25.2 (SD 10.4)%] of the increase in CR. A mean increase [17.0 (SD 26.0)%, P 〈 0.05] in the mechanical cost (C M) from a mean of 2.36 (SD 0.23) J · kg−1 · m−1 to a mean of 2.74 (SD 0.55) J · kg−1 · m−1 was also noted. A significant correlation was found between C R and C M in the non-fatigued state (r = 0.68, P 〈 0.01), but not in the fatigued state (r = 0.25, NS). Furthermore, no correlations were found between the changes (from non-fatigued to fatigued state) in C R and the changes in C M suggesting that the increase in C R is not solely dependent on the external work done per unit of distance. Since step frequency decreased slightly in the fatigued state, the internal work would have tended to decrease slightly which would not be compatible with an increase in C R. A stepwise regressions showed that the changes in C R were linked (r = 0.77, P 〈 0.01) to the changes in the variability of step frequency and in the variability of potential cost suggesting that a large proportion of the increase in C R was due to an increase in the step variability. The underlying mechanisms of the relationship between C R and step variability remains unclear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...