Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Glucose electrode ; Isolated tubule ; Glucose reabsorption ; Enzyme electrode ; Glucose oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The design and the application of a micro-enzyme-electrode for continuous monitoring of glucose concentration in the isolated tubule preparation is described. The principle of the electrode is the amperometric detection of hydrogen peroxide, which is a product of the oxidation ofd-glucose by glucose oxidase immobilized at the tip of a micro-electrode. The resulting current causes a voltage deflection across a resistor in series with the electrode that is correlated directly with the glucose concentration. The electrode response to glucose is almost linear over the concentration range from 0 to 12 mmol/l with a slightly diminished slope in the higher range. Other sugars (12 mmol/l raffinose, galactose, fructose, sucrose, mannitol), pH (from 6.5 to 8.0) andpCO2 (from 1 to 10 kPa) do not influence the reading. A reduction ofpO2 in the test solution to 1 kPa blunts the reading. Raising the temperature from 20°C to 40°C leads to a pronounced increase of the voltage deflection at a given glucose concentration. Interference is observed with strongly reducing agents such asl-cysteine, ascorbic acid and uric acid. At defined conditions the electrode is well suited to measure continuously glucose concentration in the luminal fluid at the collection site of the isolated perfused tubule of the kidney. Experiments are presented which illustrate the performance of the glucose electrode in this isolated tubule set-up. Peritubular reduction of potassium concentration or the application of ouabain diminish glucose reabsorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 400 (1984), S. 388-392 
    ISSN: 1432-2013
    Keywords: Microelectrode ; Galactose ; Raffinose ; Isolated perfused tubule ; Mouse ; Proximal tubule ; Volume reabsorption ; Acetazolamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Manufacture, properties and use of a micro enzyme electrode for continuous monitoring of volume fluxes in the isolated tubule preparation is described. The specific electrode is a galactose-oxidase enzyme electrode, which can be used to detect changes in raffinose concentrations. The electrode's response to raffinose is almost linear over concentrations from 0–12 mmol/l. The electrode equally responds to galactose as to raffinose but is insensitive to other sugars, to pH changes (from 6.0–8.0), CO2 (from 1–10%) and electrolytes tested. Reducing O2 from 100 to 10% and to 1%, leads to a reduction of the reading by 10% and 30%, respectively. The reading is almost doubled when the temperature is increased from 20–40° C. Furthermore, reducing agents such as uric acid and ascorbic acid interfere with the reading. If these substances and raffinose are omitted from the perfusate for isolated perfused proximal mouse tubules, the reading is identical in perfusate and collected fluid, indicating that the tubular epithelium does not produce substances in sufficient amounts to interfere with the electrode reading. After addition of 6 mmol/l raffinose to the perfusate the raffinose concentration in the collected fluid of 0.76±0.05 mm segments of straight proximal mouse tubules (perfusion rate = 3.4±0.45 nl/min) is 10.2±0.3 mmol/l, indicating a volume reabsorption of 1.5±0.3 nl/min. Peritubular application of acetazolamide reduces the volume reabsorption by 42±4%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...