Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (2)
  • divalent metal ion simulation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 13 (1992), S. 100-111 
    ISSN: 0887-3585
    Keywords: restrained energy minimization ; enzyme mechanism ; divalent metal ion simulation ; glucose isomerase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A proposed reaction mechanism for the enzyme D-xylose isomerase involves the ring opening of the cyclic substrate with a subsequent conformational rearrangement to an extended open-chain form. Restrained energy minimization was used to simulate the rearrangement. In the ring-opening step, the substrate energy function was gradually altered from a cyclic to an open-chain form, with energy minimization after each change. The protein/sugar contact energy did not increase significantly during the process, showing that there was no steric hindrance to ring opening. The conformational rearrangement involves an alteration in the coordination of the substrate to metal ion [1], which was induced by gradually changing restraints on metal/ligand distances. By allowing varying amounts of flexibility in the protein and examining a simplified model system, the interactions of the sugar with metal ion [1] and its immediate ligands were found to be the most important contributors to the energy barrier for the change. Only small changes in the positions of protein atoms were required. The energy barrier to the rearrangement was estimated to be less than the Arrhenius activation energy for the enzymatic reaction. This is in accordance with experimental indications that the isomerization step is rate determining. © 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Die Beziehung zwischen Struktur und Aktivität von Enzymen kann heute erstmals durch systematische Veränderung der Proteinstruktur analysiert werden. Die rapide Entwicklung der DNA-Rekombinations-Techniken einerseits und die Erarbeitung leistungsfähiger Methoden zur chemischen Synthese von DNA-Fragmenten andererseits ermöglichen es, auf einfache Weise Proteine durch spezifische Mutation der entsprechenden Gene gezielt zu verändern. Die kinetische Analyse von Mutanten-Enzymen und die durch hochauflösende Röntgen-Kristallographie erhaltenen Befunde lassen direkt Rückschlüsse auf die Beziehung zwischen Struktur und Funktion zu. Insbesondere können jetzt Enzym-Substrat-Wechselwirkungen und deren Bedeutung für Katalyse und Spezifität detailliert untersucht werden. Den gezielten Austausch einer oder mehrerer Aminosäuren eines Proteins - eine „ortsspezifische Mutagenese“ („site-directed mutagenesis“) führten wir exemplarisch zur Analyse der Struktur-Funktions-Beziehung an der Tyrosyl-tRNA-Synthetase aus Bacillus stearothermophilus durch; dabei konzentrierten wir uns auf das Studium der Rolle der Wasserstoffbrückenbindungen für Substratspezifität und Katalyse. Die Bindung von Tyrosin und ATP kann nur unter Berücksichtigung der Austauschreaktion mit den Wassermolekülen der Hydrathülle verstanden werden. Diese Tatsache und die Kenntnis der detaillierten Struktur ermöglichten es uns, ein Enzym mit erhöhter Substrataffinität maßzuschneidern. Durch ein solches „Protein-Engineering“ können Enzyme mit neuen Spezifitäten, Aktivitäten und Struktureigenschaften gewonnen und direkte Einblicke in die Art und Weise der Enzymkatalyse erhalten werden. Wir fanden beispielsweise, daß die Katalyse der Bildung von Tyr-AMP aus Tyr und ATP hauptsächlich auf elektrostatischen Kräften und Wasserstoffbrückenbindungen beruht, die im Übergangszustand stärker als im Grundzustand sind - ein „strain“-Mechanismus also und weniger eine Säure-Base-Katalyse oder eine kovalente Katalyse.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0570-0833
    Keywords: Analytical methods ; Enzymes ; Protein engineering ; Enzyme activity ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Structure-activity relationships of enzymes can now be analyzed for the first time by the systematic alteration of protein structure. Recent developments in the chemical synthesis of DNA fragments and recombinant DNA technology enable the facile modification of proteins by highly specific mutagenesis of their genes. Kinetic analysis of the mutant enzymes combined with high-resolution structural data from protein X-ray crystallography allow direct measurements on the relationships between structure and function. In particular, the strength and nature of enzyme-substrate interactions and their detailed roles in catalysis and specificity can now be studied. We have developed such analysis of enzyme structure-function by site-directed mutagenesis of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus, concentrating so far on the subtle role of hydrogen bonding in both substrate specificity and catalysis. We find that the energetics of tyrosine and ATP binding must be analyzed in terms of an exchange reaction with solvent water. Based on this idea and structural data, we have engineered an enzyme of improved enzyme-substrate affinity, and there thus appear to be real prospects of engineering proteins of new specificities, activities, and structural properties. We are also using protein engineering to gather direct information on the nature of enzyme catalysis. For example, we find the catalysis of formation of Tyr-AMP from Tyr and ATP is due largely to electrostatic and hydrogen bonding interactions that are stronger in the transition state than in the ground state - a “strain” mechanism rather than acid-base or covalent catalysis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...