Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 8 (1996), S. 49-66 
    ISSN: 1573-5001
    Keywords: Refinement ; Genetic algorithm ; Adenosine ; FK506
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A new NMR refinement method, FINGAR (FIt NMR using a Genetic AlgoRithm), has been developed, which allows one to determine a weighted set of structures that best fits measured NMR-derived data. This method shows appreciable advantages over commonly used refinement methods. FINGAR generates an ensemble of conformations whose average reproduces the experimental NMR-derived restraints. In addition, a statistical importance weight is assigned to each of the conformations in the ensemble. As a result, one is not limited to simply presenting an envelope of sampled conformers. Instead, one can subsequently focus on a select few conformers of high weight. This is critical, because many structural analyses depend on using discrete conformations, not simply averages or ensembles. The genetic algorithm used by FINGAR allows one to simultaneously and reliably fit against many restraints, and to generate solutions which include as many conformations with non-zero weights as are necessary to generate the best fit. An added benefit of FINGAR is that because the time-consuming step in this method needs only to be performed once, in the beginning of the first run, numerous FINGAR simulations can be performed rapidly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...