Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 138-153 
    ISSN: 1437-3262
    Keywords: Granitoid ; Polyphase deformation ; Strike-slip tectonics ; Variscan French Massif Central
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the Variscan French Massif Central, the South Limousin area consists of low- to medium-grade metamorphic rocks intruded by two granitic bodies. The structural and textural analyses of these plutons undertaken in parallel with the structural analysis of their host rocks allow us to characterize and to date different stages in the tectonic evolution of this area. This study shows that the South Limousin area experienced successivelly two strike-slip events along two geographically distinct shear zones, from north to south the left-lateral Estivaux and the right-lateral South Limousin strike-slip faults, respectively. These ductile faults subdivide the South Limousin into three structural units, from north to south they are the Upper Gneiss unit, Thiviers-Payzac unit .and Génis unit. The two granitic bodies intrude the Thiviers-Payzac unit only. The younger Estivaux granite is a syntectonic pluton which emplaced during left-lateral wrenching. 40Ar/39Ar dates from biotites indicate an Early Carboniferous age (346 ± 3 Ma). The older granite is a pretectonic body. It is the Ordovician “Saut du Saumon” augen orthogneiss in which detailed structural analyses show the polyphase nature of the solid-state deformation. Our microtectonic data indicate that the right-lateral motions overprint the left-lateral ones and produce apparently symmetrical fabrics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0192-253X
    Keywords: transformation ; gene structure ; cAMP ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The cyclic nucleotide phosphodiesterase (phosphodiesterase) of Dictyostelium discoideum plays an essential role in development by hydrolyzing the cAMP used as a chemoattractant by aggregating cells. We have studied the biochemistry of the phosphodiesterase and a functionally related protein, the phosphodiesterase inhibitor protein, and have cloned the cognate genes. A 1.8-kb and a 2.2-kb mRNA are transcribed from the singlephosphodiesterase gene. The 2.2-kb mRNA comprises the majority of the phosphodiesterase mRNA found in differentiating cells and is transcribed only during development from a promoter at least 2.5 kb upstream of the translational start site. The 1.8-kb phosphodiesterase mRNA is detected at all stages of growth and development, is present at lower levels than the developmentally induced mRNA, and is transcribed from a site proximal to the protein-coding region. The phosphodiesterase gene contains a minimum of three exons, and a 2.3-kb intron, the longest yet reported for this organism. We have shown that the pds A. gene and fourfgd genes affect, the accumulation of the phosphodiesterase mRNAs, and we believe that these loci represent a significant portion of the genes regulating expression of the phosphodiesterase. The phosphodiesterase gene was introduced into cells by transformation and used as a tool to explore the effects of cAMP on the terminal stages of development. In cells expressing high levels of phosphodiesterase activity, final morphogenesis cannot be completed, and differentiated spore and stalk cells do not form. We interpret these results to support the hypothesis that cAMP plays an essential role in organizing cell movements in late development as well as in controlling the aggregation of cells in the initial phase of the developmental program.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0192-253X
    Keywords: cAMP ; chemotaxis ; transformation ; CAT constructs ; gene regulation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The genes coding for the cyclic nucleotide phosphodiesterase (PD) and the PD inhibitory glycoprotein (PDI) have been cloned and characterized. The PDI gene was isolated as a 1.6 kb genomic fragment, which included the coding sequence containing two small introns and 510 nucleotides of non-translated 5′ sequence. From the deduced amino acid sequence we predict a protein with a molecular weight (MW) of 26,000 that, in agreement with previous data, contains 15% cysteine residues. Genomic Southern blot analysis indicates that only one gene encodes the inhibitor. Northern blot analysis shows a single transcript of 0.95 kb. The PDI gene is expressed early in development with little transcript remaining following aggregation. The appearance of PDI mRNA is prevented by the presence of cAMP, but when cAMP is removed the transcript appears within 30 minutes. When cAMP is applied to cells expressing PDI the transcript disappears with a half-life of less than 30 minutes. The PD gene of D. discoideum is transcribed into three mRNAs: a 1.9 kb mRNA specific for growth, a 2.4 kb mRNA specific for aggregation, and a 2.2 kb mRNA specific for late development. The 2.2 kb mRNA is also specific for prestalk cells, and is induced by differentiation-inducing factor. All three mRNAs contain the same coding sequence, and differ only in their 5′ non-coding sequences. Each mRNA is transcribed from a different promoter, and by using the chloramphenicol acyltransferase gene as a reporter, we have shown that each promoter displays the same regulation as its cognate mRNA. Transformation of wild-type strains with the PD gene causes PD overexpression which accelerates aggregation and blocks subsequent cell differentiation and pattern formation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...