Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Genetics  (2)
  • Mitotic spindle assembly  (1)
  • Saccharomyces  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 2 (1980), S. 79-85 
    ISSN: 1432-0983
    Keywords: Meiosis ; Recombination ; DNA ; Saccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In meiotic cells of Saccharomyces cerevisiae, reduction in molecular weights of DNA in alkaline sucrose gradients is observed concomittantly with premeiotic DNA replication and with commitment to recombination. Following the completion of the latter processes, higher molecular weights are obtained. These single-stranded breaks are found in both old and newly synthesised strands. Similar scissions in DNA are also found in a temperature-sensitive mutant (cdc40/cdc40), which does not undergo commitment to recombination at the restrictive temperature, and in vegetative wild type cells that were previously exposed to sporulation medium. The suggestion that these scissions are the physical manifestation of commitment to recombination is therefore rejected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: CDC40 ; DNA replication ; Mitotic spindle assembly ; cyclins ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a β-transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 139-147 
    ISSN: 0192-253X
    Keywords: IME1 ; meiosis ; transcriptional activator ; S. cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Previous studies have shown that the IME1 gene is required for sporulation and the expression of meiosis specific genes in Saccharomyces cerevisiae. However, sequence analysis has not revealed the precise functional role of the Ime1 protein. By engineering constructs which express various portions of the Ime1p fused to either the DNA binding or transcriptional activation domains of GAL4, we have conclusively demonstrated that IME1 is a transcription factor, apparently required for sporulation to activate the transcription of meiosis specific genes. The full Ime1p, when fused to the GAL4 DNA binding domain, can both activate GAL1-IacZ expression, and complement Ime1-0 (a null allele) for the ability to sporulate, and transcriptionally activate IME2, a meiosis specific gene. As successively larger portions of the encoded Ime1p N-terminus are deleted from the GAL4(bd)-IME1 construct, the encoded fusion proteins retain the ability to complement an ime1 null allele, despite a decreasing ability to activate GAL1-lacZ transcription. However, a fusion construct which retains only the last 45 C-terminal amino acids of IME1 provides neither transcriptional activation of GAL1-lacZ nor complementation of ime1-0. Fusion of a GAL4 activation domain to this portion of IME1, results in a construct with a restored ability to complement an ime1-0 cllele. This restored ability is dependent upon galactose induction. We conclude, therefore, that IME1 functions in meiosis as a transcriptional activator. © 1994 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0192-253X
    Keywords: IME1 ; Meiosis ; Transcriptional regulation ; S. cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The IME1 gene of Saccharomyces cerevisiae encodes a transcription factor that is required for the expression of meiosis-specific genes. Like many of the genes it regulates, IME1 itself is expressed according to the following complex pattern: barely detectable levels during vegetative growth, and high induced levels under starvation conditions, followed by a subsequent decline in the course of meiosis. This report examines the influence of Ime1 protein on its own expression, demonstrating feedback regulation. Disruption of either IME1 or IME2 leads to constantly increasing levels of Ime1-lacZ expression, under meiotic conditions. This apparent negative regulation is due to cis elements in the IME1 upstream region, which confer transient meiotic expression to heterologous promoter-less genes. A specific DNA/protein complex, whose level is transiently increased under meiotic conditions, is detected on this element. In ime1- diploids, the level of this DNA/protein complex increases, without any decline. These results indicate that the transient expression of IME1 is apparently due to transcriptional regulation. This report also presents evidence suggesting that Ime 1p is directly responsible for regulating its own transcription. Positive feedback regulation in mitotic conditions is suggested by the observation that overexpression of Ime 1p leads to increased levels of IME1-lacZ. Negative autoregulation in meiotic cultures is demonstrated by the observation that a specific point mutation in IME1, ime 1-3, permits expression of meiosis-specific genes, as well as induction of meiosis, but is defective in negative-feedback regulation of IME1. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...