Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Glial cell line-derived neurotrophic factor (GDNF) GDNF family receptor-alpha Major pelvic ganglion Neurotrophic factor Penis Rat (Wistar)  (1)
  • Rat (Sprague Dawley)  (1)
Material
Years
Keywords
  • 1
    ISSN: 1432-0878
    Keywords: Glial cell line-derived neurotrophic factor (GDNF) GDNF family receptor-alpha Major pelvic ganglion Neurotrophic factor Penis Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Glial cell line-derived neurotrophic factor (GDNF), a member of the GDNF family of neurotrophic factors, promotes the survival and function of several neuronal populations in the peripheral and central nervous system. In the present study, expression of GDNF mRNA in the shaft of adult rat penis is demonstrated. In situ hybridization revealed GDNF mRNA expression in cells lying in the narrow zone between the tunica albuginea and the cavernous tissue. Most subtunical cells exhibited immunoreactivity for vimentin and S100beta, but they did not stain for smooth muscle alpha actin or PGP9.5. This suggests that the GDNF mRNA-expressing cells may have a mesenchymal origin. Also retrograde axonal transport of intracavernously injected 125I-labeled GDNF in penile parasympathetic and sensory neurons is shown. The transport was inhibited by excess unlabeled GDNF, whereas excess cytochrome c had no effect. This is in agreement with the view that the transport was mediated by binding to specific receptors located on axon terminals. In addition, this study demonstrates expression of GDNF family receptor-α3 (GFRα3) mRNA in most adrenergic, but only in a minor part (5.3%) of the penis-projecting adult rat major pelvic ganglion neurons, as well as in almost half (45.6%) of the penile S1 dorsal root ganglion neurons. In conclusion, the present data suggest that GDNF may act as a neurotrophic factor for subpopulations of adult rat penile parasympathetic and sensory neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 290 (1997), S. 285-297 
    ISSN: 1432-0878
    Keywords: Keywords: Growth cone ; Neurotrophins ; trk Receptors ; Dorsal root ganglion ; F-actin ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Neurotrophins NGF, BDNF, NT-3, and NT-4/5 are members of the neurotrophin family of proteins, which support the survival and induce differentiation of vertebrate neurons. We have studied the effects of neurotrophins on growth cones of embryonic sensory neurons. BDNF and NT-4/5 cause growth cone collapse and transient neurite growth inhibition in NGF-dependent or NT-3-dependent rat dorsal root ganglion (DRG) neurons but not in BDNF-dependent or NT-4/5-dependent neurons, whereas NGF and NT-3 do not produce growth-cone collapse in these neurons. All neurotrophins show a chemoattractive effect on growth cones of embryonic DRG neurons: NGF and NT-3 are chemoattractants for all DRG neurons, except NT-3-dependent and NT-4/5-dependent neurons; BDNF and NT-4/5 are chemoattractants only for BDNF-dependent DRG neurons. BDNF-induced and NT-4/5-induced growth cone collapse is quantitatively characterized as a 50% decrease in F-actin content, total protein content, and area of growth cones of NGF-dependent or NT-3-dependent neurons, and a reorganization of microfilaments. BDNF induces a rapid transient 3-fold to 4-fold increase of F-actin concentration at the central part of growth cones of NGF-dependent neurons. Our results suggest that different neurotrophins have chemoattractive or inhibitory effects on the same growth cone, and that they may act as specific growth cone guidance cues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...