Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Glutamate transporter (GLAST)  (1)
  • Rana pipiens  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 249 (1987), S. 421-425 
    ISSN: 1432-0878
    Keywords: Cholinergic synapses ; Ultrastructure ; Exocytosis ; Non-synaptic release ; Neuropeptides ; Carassius auratus ; Rana pipiens ; Wistar white rat ; Hamster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Nerve terminals forming typical synapses with adrenal chromaffin tissues have been examined in the goldfish, frog (Rana pipiens), hamster and rat. Presumptive secretory inclusions present in the terminals are of two distinct types. Electron-lucent synaptic vesicles 30–50 nm in diameter are densely clustered adjacent to membrane thickenings and presumably discharge their contents into the synaptic clefts. Secretory granules (i.e. large dense-cored vesicles) 60–100 nm in diameter are more abundant in other parts of the terminals. Sites of granule exocytosis have been observed in each of the animals investigated. They are usually encountered within apparently undifferentiated areas of plasmalemma and only rarely occur within synaptic thickenings. Granule exocytosis from within synaptic terminals and chromaffin gland cells is most readily observed in specimens exposed, prior to fixation, to saline solutions containing both tannic acid, and 4-aminopyridine and/or elevated levels of K+. These findings show that the pattern of secretory discharge, involving both synaptic and non-synaptic release, which is widespread in invertebrate central nervous systems, is also characteristic of vertebrate, peripheral cholinergic terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words D-aspartate ; Development ; Glutamate ; Retina ; Glutamate transporter (GLAST) ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The patterns of expression of the glutamate transporter GLAST were compared with the patterns of uptake of exogenous D-aspartate, which is a substrate for all glutamate transporters. At postnatal day 0, fine radial processes and end feet of presumptive Müller cells were weakly immunoreactive for GLAST. At postnatal day 3, intense labelling was associated with astrocytes enveloping newly formed blood vessels on the vitread surface of the retina. Between postnatal days 7 and 10, there was a rapid increase in the intensity of labelling in the Müller cells but clear stratification of GLAST-immunoreactive processes in the inner plexiform layer was not observed until postnatal day 14. By comparison, D-aspartate uptake was initially associated with a wide variety of cellular elements including most neuroblasts, presumptive Müller cells, and astrocytes associated with blood vessels but was absent from the somata of many neurons in the ganglion cell layer and amacrine cell layer. There was a gradual contraction in the numbers of cells that were able to take up D-aspartate, such that, by adulthood, uptake was restricted mainly to Müller cells and astrocytes. We conclude that, during early retinal development, the low levels of GLAST expression by Müller cells permit D-aspartate, and by inference, glutamate, to permeate the retina freely, thus allowing uptake by other glutamate transporters on other cell types. As the retina matures, increased expression of GLAST by Müller cells restricts the access of D-aspartate to other cellular compartments in the retina. This changing pattern of spatial buffering of glutamate by GLAST probably has significant implications regarding our understanding of the role of glutamate during processes such as retinal synaptogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...