Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 17 (1973), S. 18-34 
    ISSN: 1432-1106
    Keywords: Lateral geniculate nucleus ; Monkeys ; Golgi type II interneurons ; Synaptic arrangements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Total excision of areas 17-18-19 in the monkey leads to disappearance of relay cells and corticogeniculate axon terminals in the LGN (lateral geniculate nucleus). The few remaining neurons can be safely considered as Golgi type II cells. Electron microscopic examination of such material revealed small ovoid neurons and synaptic clusters encapsulated by glia. Within the cluster there were the characteristic axon terminal of retinal origin, and a peculiar light and large profile with features of both axons (small, flattened synaptic vesicles) and dendrites (many microtubules, endoplasmic cisterns and free ribosomes) in varying proportions. These elements were also present within the heavily gliotic general neuropil and, in longitudinal section, showed segments with strongly dendritic features, and others with vesicles either scattered or grouped near synaptic specializations. Similar profiles were also seen in normal LGN. Light microscopic examination of Golgi series from adult normal monkeys revealed two types of interneurons in the LGN, both having extremely thin axons which could not correspond in size to the ambiguous profiles described above. The latter could well match the appendages so frequently shown by the dendrites of one of the interneuron types. These findings suggest that the synapses in the glomeruli of LGN previously defined as “axo-axonic” may in fact be between optic axon terminals and the dendritic profiles with synaptic vesicles delineated in this study. Thence, the role of the Golgi type II interneuron could be interpreted at least in part as lateral inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 44 (1981), S. 259-270 
    ISSN: 1432-1106
    Keywords: Extrageniculostriate vision ; Monkeys ; Spatial localization ; Striate cortex ; Superior colliculus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Eight monkeys (Macaca mulatta) were trained on a spatial localization task before and after either total ablation of the striate cortices with partial damage to circumstriate cortices, complete colliculus removals, or combined ablations. The lesions were histologically verified. The task, given under normal room illumination, required the animals to reach for a target randomly placed in one of eight equal segments of a white disk located at arm's length. An apple cube, affixed to the center of the target, served as the reward for accurate reaching. A correct response consisted of an initial contact with either the target or the apple cube directly. The animal was trained sequentially to a criterion level of performance set at 90% correct responses over four 56-trial consecutive sessions using black disks of decreasing diameter (i.e., 90 mm, 55 mm, 35 mm, and 15 mm). Finally, only the apple cube, about 10 mm on a side, was presented. Four animals with complete or almost complete bilateral superior colliculus removals were unimpaired in their performances. The other four subjects with total striate cortex removals could be trained to reach accurately for all targets, but with marked deficits on the first and last tests, i.e., the 90 mm disk and the apple cube. When the striate cortex was ablated in the colliculectomized animals, they failed to attain a criterion level of performance in almost 6,000 trials. These results indicate that the superior colliculus is at least one structure that is critical for spatial localization in the absence of striate cortex, but it is not crucial for this capacity in the otherwise intact animal. In addition, the findings confirmed previous studies which showed that monkeys with total bilateral striatectomies could reacquire the ability to execute accurate visually guided reaches. The present and earlier studies emphasize the primary importance of the geniculostriate system for the function explored and do not support a sharp dichotomy between two independent visual systems in the monkey.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...