Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 3 (1991), S. 151-155 
    ISSN: 0899-0042
    Keywords: (-)-(R) and (+)-(S) [8] gingerol ; enantiomers synthesis ; chiral stationary phase ; HPLC ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: (+)-(S)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-dodecanone 1a commonly named (+)-(S)-[8] gingerol is a natural product known to have cardiotonic activity.1-5 A total synthesis of both enantiomers is described with details for the first time using a general synthetic scheme which was recently outlined in the literature.6 This synthesis relies both on the separation of the diastereoisomers 4a and 4b by simple column chromatography on silica gel and on an HPLC analysis on a chiral phase to determine the optical purity of the enantiomers 8a and 8b of protected [8] gingerol. The gingerol isomers were thus obtained in good chemical yields in greater than 96% enantiomeric excess.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0268-2605
    Keywords: magnetization reversal ; iron oxide particles ; SQUID ; atomic force microscopy ; Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We report first measurements of the magnetization reversal of monodisperse 30 nm and 50 nm ferromagnetic Fe3O4 particles. These particles are produced in a carrier gas as an aerosol by spray pyrolysis. After production and size selection, they are precipitated on a silicon chip with a niobium SQUID (superconducting quantum interference device) incorporated on its surface. By changing a magnetic field in the plane of the SQUID, we can measure the magnetization reversal of the particles by the flux they induce into the SQUID. The angular dependence of this reversal is determined by rotating the magnetic field around the SQUID. Scanning electron microscope (SEM) images have confirmed the particle size and revealed the position of the collected particles. If the particle concentration is too high, we cannot detect changes in the magnetic moment of a single particle, but measure the magnetic properties of the whole assembly. If only a few particles are found on the SQUID loop the angular dependence of the magnetic reversal of a single particle can be measured; this result is compared with a simple model of magnetization reversal. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...