Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hamamelitol  (1)
  • Ribulose-1,5-bisphosphate carboxylase/oxygenase (diurnal regulation)  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Carboxyarabinitol 1-phosphate ; Chenopodium ; Phaseolus ; Photosynthetic regulation ; Ribulose-1,5-bisphosphate carboxylase/oxygenase (diurnal regulation)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; 〉700 μmol · m−2 · s−1) to a low PPFD (65 ± 15 μmol · m−2 · s−1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 μmol · m−2 · s−1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (〈 30 μmol · m−2 · s−1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Carboxyarabinitol ; Hamamelitol ; Hedera ; Sugar alcohol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Branched-chain sugars and sugar alcohols are unusual, but perhaps widespread, plant constituents whose associated biochemistry and function are poorly understood. Herein we show that one such sugar alcohol, hamamelitol (2-C-hydroxymethyl-D-ribitol), does occur in leaves of many different species often in very high amounts. Hamamelitol levels were quantitated by an isotope dilution assay we developed with a detection limit of about 15 nmol per g fresh weight, and its identity was verified using electrospray ionization mass spectrometry. The taxonomic distribution of hamamelitol was disjunct: hamamelitol was present in species of distantly related orders such as Laurales, Fabales, and Primulales, but was not necessarily present in different genera of the same family. Species with high leaf levels of carboxyarabinitol (2-C-hydroxymethyl-D-ribonic acid) generally have low hamamelitol levels. Leaves of Hedera helix L. contain the most hamamelitol of any species examined, with levels comparable to those of sucrose. The youngest leaves of H. helix accumulated the most hamamelitol, about 11 μmol per g fresh weight. Growth of H. helix with periodic sub-freezing temperatures did not induce further accumulation of leaf hamamelitol. Hamamelitol levels were also high in leaf petioles of H. helix, which indicates that this sugar alcohol may be translocatable. Further, the mass spectrometry analysis indicates that a non-covalent dimer of hamamelitol may be more prevalent in vivo than is the monomeric form.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...