Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Heat shock ; Thermotolerance ; Ploidy ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The resistance of Saccharomyces cerevisiae to inactivation by DNA damaging agents has long been known to be affected by cell ploidy. Resistance is greater for diploid than for haploid cells, but exhibits decreases for further increases in ploidy beyond diploid. In this study S. cerevisiae cells whose genomes differ only in their ploidy were employed to investigate how ploidy directly influences resistance to thermal killing. In virtually all species resistance to thermal killing is a cellular property that is elevated by heat shock and other agents that induce the heat shock response. We therefore investigated how ploidy affected the thermal killing of S. cerevisiae cells both before and after elevation of thermotolerance by means of a 40 min 25 °C to 38 °C heat shock. Without such induction of thermotolerance there was negligible effect of ploidy on thermal killing. In contrast in the heat shocked cultures there was an appreciable decrease in thermotolerance as ploidy increased. This difference indicates that the lethal thermal damage in the thermotolerance induced cultures is not totally equivalent to that in cells not given a prior heat shock, and that gene expression changes after heat shock result in a ploidy effect on heat tolerance which is absent from cells in which the heat shock response has not been induced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...