Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 72 (1996), S. 451-459 
    ISSN: 1439-6327
    Keywords: Posture ; Tilt-table ; Thermoneutrality ; Heat storage ; Blood flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Early studies have demonstrated that rectal temperature (T re) decreases and mean skin temperature (T sk) increases in subjects changing their posture from standing to supine, and vice versa. Such changes have important implications insofar as thermal stress experiments are conducted and interpreted. However, the extent of these changes between steady-state conditions is not known. In addition, it is not known whether thermal balance is also affected by postural changes. To examine these questions, 11 healthy males were exposed to a thermoneutral air environment (28.2–28.5°C and 40% relative humidity) in various postures at rest. Body temperatures, heat losses, and metabolic rate were measured. Subjects wore shorts only and began in an upright posture (standing or sitting at an inclination of 7.5°) on a customized tilt-table. They were tilted twice, once into a supine position and then back to the original upright position. Each tilt occurred after steady state was satisfied based on the subject's circadian variation of T re determined previously in a 4.25 h control supine trial. Times to supine steady state following the first tilt were [mean (SE)] 92.6 (6.4) and 116.6 (5.1) min for the standing and sitting trials, respectively. Times to upright steady state following the second tilt were 107.9 (11.4) and 124.1 (9.0) min. Mean steady-state T re and T sk were 36.87 (0.07) and 34.04 (0.14), 37.47 (0.09) and 33.48 (0.14), and 37.26 (0.05) and 33.49 (0.10) °C for supine, standing, and sitting, respectively. Thermal balance was attained in all steady-state conditions, and allowing for a decrease in the weighting factor of T re for mean body temperature in the upright postures, it also appears that thermal balance was preserved between changes in posture. These results are consistent with no perceived changes by the subjects in their thermal comfort and skin wetness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...