Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: Hemoglobin ; tetramer strength ; delta gene ; allosteric regulator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Hemoglobin A2 (α2δ2), which is present at low concentration (1–2%) in the circulating red cells of normal individuals, has two important features that merit its study, i.e., it inhibits polymerization of sickle HbS and its elevated concentration in some thalassemias is a useful clinical diagnostic. However, reports on its functional properties regarding O2 binding are conflicting. We have attempted to resolve these discrepancies by expressing, for the first time, recombinant hemoglobin A2 and systematically studying its functional properties. The construct expressing HbA2 contains only α and δ genes so that the extensive purification required to isolate natural HbA2 is circumvented. Although natural hemoglobin A2 is expressed at low levels in vivo, the amount of recombinant α2δ2 expressed in yeast is similar to that found for adult hemoglobin A and for fetal hemoglobin F when the α + β or the α + γ genes, respectively, are present on the construct. Recombinant HbA2 is stable, i.e., not easily oxidized, and it is a cooperative functional hemoglobin with tetramer-dimer dissociation properties like those of adult HbA. However, its intrinsic oxygen affinity and response to the allosteric regulators chloride and 2,3-diphosphoglycerate are lower than the corresponding properties for adult hemoglobin. Molecular modeling studies which attempt to understand these properties of HbA2 are described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: calcium/calmodulin kinase II ; calcium-dependent protein kinase ; GT-1 ; rbcS-3A ; phytochrome signal transduction ; transcription factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The analysis of pea rbcS-3A promoter sequence showed that BoxII was necessary for the control of rbcS-3A gene expression by light. GT-1, a DNA-binding protein that interacts with BoxII in vitro, is a good candidate for being a light-modulated molecular switch controlling gene expression. However, the relationship between GT-1 activity and light-responsive gene activation still remains hypothetical. Because no marked de novo synthesis was detected after light treatment, light may induce post-translational modifications of GT-1 such as phosphorylation or dephosphorylation. Here, we show that recombinant GT-1 (hGT-1) of Arabidopsis can be phosphorylated by various mammalian kinase activities in vitro. Whereas phosphorylation by casein kinase II had no apparent effect on hGT-1 DNA binding, phosphorylation by calcium/calmodulin kinase II (CaMKII) increased the binding activity 10–20-fold. Mass spectrometry analyses of the phosphorylated hGT-1 showed that amongst the 6 potential phosphorylatable residues (T86, T133, S175, T179, S198 and T278), only T133 and S198 are heavily modified. Analyses of mutants altered at T86, T133, S175, T179, S198 and T278 demonstrated that phosphorylation of T133 can account for most of the stimulation of DNA-binding activity by CaMKII, indicating that this residue plays an important role in hGT-1/BoxII interaction. We further showed that nuclear GT-1 DNA-binding activity to BoxII was reduced by treatment with calf intestine phosphatase in extracts prepared from light-grown plants but not from etiolated plants. Taken together, our results suggest that GT-1 may act as a molecular switch modulated by calcium-dependent phosphorylation and dephosphorylation in response to light signals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...