Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • High K^+ stimulation  (1)
  • LY53857  (1)
  • Type 1 (insulin-dependent) diabetes mellitus  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 223 (1987), S. 413-416 
    ISSN: 0014-5793
    Keywords: (Adrenal chromaffin cell) ; Ca^2^+ uptake ; High K^+ stimulation ; Inositol trisphosphate accumulation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 45 (1989), S. 879-881 
    ISSN: 1420-9071
    Keywords: Serotonin ; protein phosphorylation ; smooth muscle cells ; LY53857 ; inositol trisphosphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The effects of serotonin on the formation of inositol phosphates and protein phosphorylation were examined in cultured smooth muscle cells. Serotonin stimulated the formation of [3H]inositol monophosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. This effect was prevented by 5-HT2 specific antagonist, 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 2-hydroxy-1-methylpropyl ester [Z]-2-butenedioate (LY53857). Serotonin stimulated the phosphorylation of many polypeptides, among which a 20 kDa polypeptide was the most prominent. The phosphorylation was also inhibited by LY53857. LY53857 alone produced no effects on protein phosphorylation. The 20 kDa polypeptides were also phosphorylated by the addition of 12-O-tetradecanoylphorbol-13-acetate. These results suggest that serotonin stimulates protein phosphorylation through 5-HT2 receptors and possibly activates protein kinase C in intact vascular smooth muscle cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Non-obese diabetic mice ; macrophage ; Type 1 (insulin-dependent) diabetes mellitus ; cytokine ; nitric oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The cytotoxicity of macrophages from non-obese diabetic (NOD) mice against murine mastocytoma (P-815), and murine beta-cell lines having the NOD gene background (MIN6N-9a), were examined. Peritoneal exudate cells from 20-week-old mice showed higher cytotoxicity, measured as inhibition of thymidine uptake into P-815, than those from 12-week-old mice (p 〈0.01). In cyclophosphamide-injected mice, cytotoxicity of peritoneal exudate cells had increased at 8 days post-injection, at which time the mice were not diabetic. To confirm macrophage cytotoxicity against pancreatic cells and examine its cytolytic mechanism, the cytotoxicity of peritoneal exudate cells from cyclophosphamide-injected NOD mice against MIN6N-9a cells was measured by the chromium release assay. These peritoneal exudate cells showed higher cytotoxicity as compared to those of saline-injected mice (p 〈0.001). Macrophages were demonstrated to be the major component of peritoneal exudate cells (50%) by flowcytometric analyses. Cytotoxicity increased with macrophage enrichment by adhesion (p 〈0.01). Furthermore, a macrophage toxin, silica, completely blocked the cytotoxicity (p 〈0.001). Cytokines (interleukin 1 and tumour necrosis factor) and a nitric-oxide-producing vasodilator, sodium nitroprusside, were cytotoxic to MIN6N-9a cells but only sodium nitroprusside showed cytotoxicity when incubated for the same period as peritoneal exudate cells. Thus, macrophages play an important role in beta-cell destruction and soluble factors other than cytokines (e.g. nitric oxide) may be mediators of this early cytolytic process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...