Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 341 (1994), S. 288-290 
    ISSN: 0014-5793
    Keywords: Adrenomedullin ; High-performance liquid chromatography ; Human plasma ; Radioimmunoassay
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key words [Met5]-enkephalin-Arg6-Phe7 hydrolysis ; Opioid peptide hydrolysis ; Amastatin-sensitive aminopeptidase ; Captopril ; Dipeptidyl carboxypeptidase I ; Phosphoramidon ; Endopeptidase-24.11 ; High-performance liquid chromatography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The contents of [Met5]-enkephalin-Arg6-Phe7 (met-enk-RF) and its six hydrolysis products: Y, YG, YGG, YGGF, YGGFM, and YGGFMR were estimated after incubating met-enk-RF with either a guinea-pig ileal or striatal membrane fraction for various times at 37° C. After 45 min incubation with either ileal or striatal membranes, met-enk-RF was completely hydrolyzed, yielding Y as the major product. Incubation with either membrane preparation for 60 min in the presence of the aminopeptidase inhibitor amastatin hydrolyzed 90 or 92% of met-enk-RF, respectively, with YGG being the major product. If the dipeptidyl carboxypeptidase I inhibitor captopril is also included in the incubation, met-enk-RF hydrolysis decreases by about half for both membranes, with YGG remaining the major product. Inclusion of three peptidase inhibitors, amastatin, captopril, and phosphoramidon (inhibition of endopeptidase-24.11) further reduced met-enk-hydrolysis, with 87% or more remaining intact. This shows that met-enk-RF was mainly hydrolyzed by three enzymes, amastatin-sensitive aminopeptidase, captopril-sensitive dipeptidyl carboxypeptidase I and phosphoramidon-sensitive endopeptidase-24.11, in both ileal and striatal membranes. Additionally, estimations of [Leu5]-enkephalin (leu-enk), α- and β-neoendorphins (α- and β-neoends), and dynorphin B (dyn B) contents after incubating the individual peptides with striatal membrane for 60 min in the presence of the three peptidase inhibitors showed that 98, 32, 5, and 23%, respectively, remained intact. Our previous studies together with the data obtained here show that one group of endogenous opioid peptides: met-enk, leu-enk, met-enk-RF, met-enk-RGL, and dyn A-(1-8) are largely or almost exclusively hydrolyzed by the three enzymes, amastatin-sensitive aminopeptidase, captopril-sensitive dipeptidyl carboxypeptidase I, and phosphoramidon-sensitive endopeptidase-24.11, and indicate that an unidentified fourth enzyme(s) is involved in the hydrolysis of another group of peptides: α-neoend, β-neoend, and dyn B.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...