Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Diffuse Lewy Body Disease ; Hippocampus ; Neurites ; Neurofilament ; Ubiquitin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Ubiquitin-immunoreactive dystrophic neurites in the CA2/3 region of the hippocampus are characteristic of diffuse Lewy body disease (DLBD). The origin of dystrophic CA2/3 neurites is unknown, but their extent correlates with the number of cortical Lewy bodies (LBs). To examine the molecular composition of these lesions, hippocampal sections were obtained at postmortem from cases of DLBD, Parkinson's disease and Alzheimer's disease. The tissue samples were fixed in a variety of fixatives and immunostained with antibodies to ubiquitin, ubiquitin C-terminal hydrolase (PGP9.5), neurofilament protein subunits, tau protein, paired helical filaments and tyrosine hydroxylase (TH). In addition to being ubiquitin positive, both cortical LBs and CA2/3 dystrophic neurites were positive with a neurofilament monoclonal antibody (RM032) and PGP9.5; however, fewer lesions were detected with these antibodies compared to ubiquitin immunocyto-chemistry. The dystrophic CA2/3 neurites were not stained with antibodies to tau proteins, paired helical filaments or TH. Absence of TH immunoreactivity suggests that CA2/3 neuritic processes are not derived from brain stem dopaminergic afferents to the hippocampus. Since CA2/3 neurites are immunologically similar to cortical LB, the pathogenesis of these lesions may be similar. Characterization of dystrophic CA2/3 neurites and cortical LBs may clarify how these lesions contribute to the emergence of dementia in DLBD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words Amyotrophy ; Axonopathy ; Neurofilaments ; Tau protein ; Transgenic mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Coding region and intronic mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17. Some of these mutations lead to an overproduction of tau isoforms with four microtubule-binding repeats. Here we have expressed the longest four-repeat human brain tau isoform in transgenic mice under the control of the murine Thy1 promoter. Transgenic mice aged 3 weeks to 25 months overexpressed human tau protein in nerve cells of brain and spinal cord. Numerous abnormal, tau-immunoreactive nerve cell bodies and dendrites were seen. In addition, large numbers of pathologically enlarged axons containing neurofilament- and tau-immunoreactive spheroids were present, especially in spinal cord. Signs of Wallerian degeneration and neurogenic muscle atrophy were observed. When motor function was tested, transgenic mice showed signs of muscle weakness. Taken together, these findings demonstrate that overexpression of human four-repeat tau leads to a central and peripheral axonopathy that results in nerve cell dysfunction and amyotrophy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...