Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pisum sativum  (3)
  • Hordeum vulgare L.  (2)
  • Soil microbial biomass  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1996), S. 39-44 
    ISSN: 1432-0789
    Keywords: Key words Immobilization ; Mineralization ; 15N-labelled crop residues ; Residue quality ; Soil microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using 15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the 15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 459-464 
    ISSN: 1432-0789
    Keywords: Key words Crop residues ; Hordeum vulgare L. ; Pisum sativum L. ; Mineralization-immobilization ; turnover of N ; Symbiotic N2 fixation-labelled N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and 〈1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 459-464 
    ISSN: 1432-0789
    Keywords: Crop residues ; Hordeum vulgare L. ; Pisum sativum L. ; Mineralization-immobilization turnover of N ; Symbiotic N2 fixation-labelled N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and 〈1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 39-44 
    ISSN: 1432-0789
    Keywords: Immobilization ; Mineralization ; 15N-labelled crop residues ; Residue quality ; Soil microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g−1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 101 (1987), S. 29-37 
    ISSN: 1573-5036
    Keywords: assimilate partitioning ; growth analysis ; leaf area ; nitrate ; nitrogen fixation ; 15N isotope dilution ; pea ; Pisum sativum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The seasonal patterns of growth and symbiotic N2 fixation under field conditions were studied by growth analysis and use of15N-labelled fertilizer in a determinate pea cultivar (Pisum sativum L.) grown for harvest at the dry seed stage. The patterns of fertilizer N-uptake were almost identical in pea and barley (the non-fixing reference crop), but more fertilizer-N was recovered in barley than in pea. The estimated rate of N2 fixation in pea gradually increased during the pre-flowering and flowering growth stages and reached a maximum of 10 kg N fixed per ha per day nine to ten weeks after seedling emergence. This was the time of early pod-development (flat pod growth stage) and also the time for maximum crop growth rate and maximum green leaf area index. A steep drop in N2 fixation rate occurred during the following week. This drop was simultaneous with lodging of the crop, pod-filling (round pod growth stage) and the initiation of mobilization of nitrogen from vegetative organs. The application of fertilizer-N inhibited the rate of N2 fixation only during that period of growth, when the main part of fertilizer-N was taken up and shortly after. Total accumulation of fixed nitrogen was estimated to be 244, 238 and 213 kg N ha−1 in pea supplied with nil, 25 or 50 kg NO 3 − −N ha−1, respectively. About one-fourth of total N2 fixation was carried out during preflowering, one fourth during the two weeks of flowering and the remainder during post-flowering. About 55% of the amount of N present in pods at maturity was estimated to be derived from mobilization of N from vegetative organs. “Starter” N (25 or 50 kg NO 3 − −N ha−1) did not significantly influence either dry matter and nitrogen accumulation or the development of leaf area. Neither root length and root biomass determined 8 weeks after seedling emergence nor the yield of seed dry matter and nitrogen at maturity were influenced by fertilizer application.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: A-value ; Barley ; Field bean ; Isotope dilution ; Nitrogen fixation ; 15N ; Non-fixing reference crop ; Pea ; Pisum sativum ; Vicia faba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The total amount of nitrogen derived from symbiotic nitrogen fixation in two pea and one field bean cultivar, supplied with 50 kg N ha−1 at sowing (‘starter’-N), was estimated to 165, 136, and 186 kg N ha−1, respectively (three-year means). However, estimates varied considerably between the three years. At the full bloom/flat pod growth stage from 30 to 59 per cent of total N2 fixation had taken place. The proportion of total N derived from N2 fixation at maturity was higher in seeds than in vegetative plant parts and amounted to 59.5, 51.3 and 66.3 per cent of total above-ground plant N in the two pea cultivars and field bean, respectively (three-year means). The recovery of fertilizer N was 62.2, 70.2, 52.1, and 69.5 per cent in the two pea cultivars, field bean and barley, respectively. Growth analysis indicated that barley did not meet the claims for an ideal reference crop in the15N fertilizer dilution technique for estimating N2 fixation in pea and field bean. ‘Starter’-N neither increased the seed yield nor the N content of the grain legumes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 97 (1987), S. 63-70 
    ISSN: 1573-5036
    Keywords: Competition ; Indirect inoculation ; Inoculum rate ; N2 fixation ; Pisum sativum ; Rhizobium leguminosarum ; Streptomycin resistant mutants ; Yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Selected streptomycin resistant strains ofRhizobium leguminosarum suspended in nutrient broth were added to the planting furrow immediately before the sowing of pea. The nodule occupancy by a strain isolated from Risø soil (Risø la) was increased from 74 to 90%, when the inoculum rate was increased from 3.7×106 to 3.7×108 cells per cm row. The experimental soil contained 103 to 104 cells ofR. leguminosarum per gram. An almost inefficient strain isolated from Risø soil (SV10) was less competitive with respect to nodulation on two pea cultivars than an efficient Risø strain (SV15) and an efficient non-Risø strain (R1045). The nodule occupancy by the introduced strains varied between pea cultivars. Irrespective of the generally high nodulation by the efficient strains introduced to the soil, the pea seed yield, compared to pea nodulated by the indigenous population, was not significantly increased. Neither were two commercial inoculants, applied in rates corresponding to 3 times the recommended rate, able to increase the yield. This suggests that the indigenous populations ofR. leguminosarum were sufficient in number and nitrogen fixing capacity to ensure an optimal pea crop. However, some inoculation treatments slightly increased the seed N concentration and total N accumulation, indicating that it may be possible to select or develop bacterial strains that may increase the yield.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...