Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Chlorobium tepidum ; Photosynthesis ; Green sulfur bacteria ; Chlorosomes ; Bacteriochlorophyll ; Thermophily ; Hot springs ; 16S rRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key words Anoxygenic phototrophic bacteria ; Heliobacteria ; Heliobacterium modesticaldum ; Thermophily ; Hot springs ; Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Enrichment cultures for heliobacteria at 50°C yielded several strains of a thermophilic heliobacterium species from Yellowstone hot spring microbial mats and volcanic soils from Iceland. The novel organisms grew optimally above 50°C, contained bacteriochlorophyll g, and lacked intracytoplasmic membranes. All isolates were strict anaerobes and grew best as photoheterotrophs, although chemotrophic dark growth on pyruvate was also possible. These thermophilic heliobacteria were diazotrophic and fixed N2 up to their growth temperature limit of 56°C. Phylogenetic studies showed the new isolates to be specific relatives of Heliobacterium gestii and, as has been found in H. gestii, they produce heat-resistant endospores. The unique assemblage of properties found in these thermophilic heliobacteria implicate them as a new species of this group, and we describe them herein as a new species of the genus Heliobacterium, Heliobacterium modesticaldum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 160 (1993), S. 363-371 
    ISSN: 1432-072X
    Keywords: Anoxygenic phototrophic bacteria ; Purple bacteria ; Rhodospirillum sodomense ; Dead Sea ; Hypersaline environments ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new species of halophilic anoxygenic purple bacteria of the genus Rhodospirillum is described. The new organism, isolated from water/sediment of the Dead Sea, was vibrio-shaped and an obligate halophile. Growth was best at 12% NaCl, with only weak growth occurring at 6% or 21% NaCl. Growth occurred at Mg2+ concentrations up to 1 M but optimal growth was obtained at 0.05–0.1 M Mg2+. Bromide was well tolerated as an alternative anion to chloride. The new organism is an obligate phototroph, growing photoheterotrophically in media containing yeast extract and acetate or a few other organic compounds. Growth of the Dead Sea Rhodospirillum species under optimal culture conditions was slow (minimum td ∼ 20 h). Cells contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series and mass cultures were pink in color. Absorption spectra revealed the presence of a B875 (light-harvesting I) but no B800/B850 (light-harvesting II) photopigment complex. The new organism shares a number of properties with the previously described halophilic phototrophic bacterium Rhodospirillum salinarum and was shown to be related to this phototroph by 16S rRNA sequencing. However, because of its salinity requirements, photosynthetic properties, and isolation from the Dead Sea, the new phototroph is proposed as a new species of the genus Rhodospirillum, R. sodomense.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Anoxygenic phototrophic bacteria ; Heliobacteria ; Heliobacterium modesticaldum ; Thermophily ; Hot springs ; Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Enrichment cultures for heliobacteria at 50°C yielded several strains of a thermophilic heliobacterium species from Yellowstone hot spring microbial mats and volcanic soils from Iceland. The novel organisms grew optimally above 50°C, contained bacteriochlorophyll g, and lacked intracytoplasmic membranes. All isolates were strict anaerobes and grew best as photoheterotrophs, although chemotrophic dark growth on pyruvate was also possible. These thermophilic heliobacteria were diazotrophic and fixed N2 up to their growth temperature limit of 56°C. Phylogenetic studies showed the new isolates to be specific relatives of Heliobacterium gestii and, as has been found in H. gestii, they produce heat-resistant endospores. The unique assemblage of properties found in these thermophilic heliobacteria implicate them as a new species of this group, and we describe them herein as a new species of the genus Heliobacterium, Heliobacterium modesticaldum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Key words Anoxygenic phototrophic bacteria ; Heliophilum fasciatum ; Heliophilum gestii ; Bacteriochlorophyll g ; Photosynthesis ; Rice fields
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two new taxa of phototrophic heliobacteria are described: Heliobacterium gestii sp. nov. and Heliophilum fasciatum gen. nov. sp. nov. Both organisms were isolated from dry paddy soils. Cells of H. gestii were motile spirilla; cells of H. fasciatum formed cell bundles that were motile as units. Both organisms produced endospores; H. gestii endospores contained dipicolinic acid and elevated levels of calcium. As with other heliobacteria, bacteriochlorophyll g was produced in both organisms and no intracytoplasmic photosynthetic membranes were observed. Growth of H. gestii and H. fasciatum occurred under both photoheterotrophic and chemotrophic conditions; nitrogen fixation also occurred in both organisms. H. gestii and H. fasciatum showed a phylogenetic relationship to the "low GC" line of gram-positive Bacteria, but H. fasciatum was distinct from H. gestii and all other heliobacteria. The ability of H. gestii and H. fasciatum to form endospores might be a significant ecological advantage for survival in their rice soil habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...