Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Key words Skeletal muscle ; Human ; Differentiation ; Protein kinase C ; Isozymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mechanism of skeletal muscle regeneration in vivo can be well modeled in vitro by culturing skeletal muscle cells. In these cultures mononuclear satellite cells fuse to form polynuclear myotubes by proliferation and differentiation. The aim of this study was to determine how the different protein kinase C (PKC) isozymes were expressed during differentiation of human skeletal muscle in vitro. The expressions of desmin, used as a muscle-specific intermediate filament protein marker of differentiation, and of different PKC isozymes were detected by single and double immunohistochemical labeling, and by Western blot analysis. In skeletal muscle cells we could identify five PKC isozymes (PKCα, -γ, -η, -θ and -ζ). The expressions of PKCα and -ζ did not change significantly during differentiation; their levels of expression were high in the early immature cells and remained unchanged in later phases. In contrast, the expression levels of PKCγ and -η increased with differentiation. Furthermore, the cellular localization of PKCγ markedly altered during differentiation, with a perinuclear-nuclear to cytoplasmic translocation. The change in the level of expression of PKCθ during differentiation showed different pattern; its expression was high during the early phases, but a decreased immunostaining was detected in the matured, well-differentiated myotubes. We conclude, therefore, that cultured human skeletal muscle cells possess a characteristic PKC isozyme pattern, and that the different phases of differentiation are accompanied by different expression patterns of the various isozymes. These data suggest the possible functional and differential roles of PKC isozymes in human skeletal muscle differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of nuclear medicine 21 (1994), S. 191-195 
    ISSN: 1619-7089
    Keywords: Thallium ; Technetium ; Single-photon emission tomography ; Regional cerebral blood flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Thallium-201 brain single-photon emission tomography (201Tl-SPET) is widely used to detect viable tumour tissue with increased metabolic activity. When reperfusion takes place early in cerebrovascular lesions of embolic origin, the presence of tissue areas with increased regional blood flow and preserved metabolic activity can also be assumed. In the present study our purpose was to investigate whether or not foci of 201Tl accumulation occur in reperfused areas with sustained morphological integrity indicated by computed tomography (CT) scans not showing hypodensity in the acute or subacute period.In 16 stroke patients with possible cortical embolic infarction, dual 201Tl and technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) SPET was performed in both the acute and the subacute period. 99mTc-HMPAO SPET was performed to detect reperfusion. Follow-up CT scans from the same period were also available. In five cases 99mTc-HMPAO SPET ruled out reperfusion and 201Tl SPET was also negative. In four cases 99mTc-HMPAO studies indicated reperfusion early in the acute phase (24–72 h), and comparative CT, without showing hypodensity in the acute or subacute period, also favoured the possibility of sustained metabolic activity. In these cases 201Tl SPET was negative in both the acute and the subacute period. In seven cases CT already showed necrosis in 99mTc-HMPAO hypoperfused areas in the acute period, with negative results on corresponding 201Tl SPET. Later reperfusion occurred in the subacute period (8–14 days) as indicated by 99mTc-HMPAO SPET, at which time an unexpected focal accumulation of 201Tl was detected. We cannot give any explanation for the findings, but further studies might clarify the matter and improve our knowledge of the precise mechanism of 201Tl uptake under different conditions. Until then the phenomenon should be borne in mind as a possible pitfall when assessing tissue viability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...