Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Explant culture ; Basal ganglia Patch-matrix distribution ; Huntington's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to establish an in vitro model of Huntington's disease, we prepared slice cultures of striatal tissue from newborn rats. The striatal cultures were grown for 12–39 days in the absence of any other brain tissue. The presence of specific cell markers was shown by immunocytochemistry, histochemistry and in situ hybridization with alkaline-phosphatase-labeled oligonucleotide probes. We focused on (1) the medium-sized, aspiny interneurons, which in vivo express the neuropeptides somatostatin and neuropeptide Y and the nitric oxide synthesizing enzyme nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase, and which are spared in Huntington's disease and (2) the enkephalinergic, medium-sized projection neurons, which are particularly vulnerable in Huntington's disease. Similar basic morphologies of the presumed interneurons and double staining of NADPH-diaphorase positive and somatostatin immunoreactive neurons suggest that the two neuropeptides and NADPH-diaphorase are extensively colocalized in the cultures, as in vivo. In the newborn rats, included as controls, a patch-matrix distribution of the NADPH-diaphorase staining is described for the first time. In the striatal slices the distribution of the NADPH-diaphorase staining stayed uneven after 3–5 weeks in culture, with areas almost devoid of staining alternating with more heavily stained areas. This pattern may represent an intermediate stage between the patch-matrix distribution in the newborn and the homogeneous staining in the adult rat striatum. From quantitative estimates we found the same mutual rank order of the numbers of neuropeptide Y- and somatostatin-immunoreactive neurons and NADPH-diaphorase positive neurons in vivo and in vitro. Both in the slice cultures and in the brain, the number of enkephalin mRNA-containing neurons significantly exceeded that of neuropeptide Y- and somatostatin mRNA-containing neurons. This implies that the mutual distribution of presumed interneurons and projection neurons was preserved in the slice cultures. Comparison of cell numbers per unit volume showed that, in the cultures, the number of presumed interneurons, with the exception of NPY mRNA-containing neurons, significantly exceeded that in vivo. In contrast, the enkephalin mRNA-containing neurons, which in vivo are projection neurons, were significantly fewer in the cultures. The relative loss of projection neurons and preservation of interneurons in single slice cultures of striatal tissue apparently mimick some of the neurodegenerative changes of Huntington's disease. From the finding that the number of neuropeptide Y mRNA-containing neurons both in vitro and in vivo was significantly higher than the number of neuropeptide Y-immunoreactive neurons — unlike the number of somatostatin mRNA containing neurons — it is suggested that somatostatin and neuropeptide Y are differentially regulated at the level of translation. The peptides are also suggested to be differentially regulated at the level of transcription because the number of somatostatin mRNA-containing neurons increased significantly in the slice cultures compared with in vivo, while the number of neuropetide Y mRNA-containing neurons was unchanged.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...