Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Spreading depression ; Hypoglycemia ; Neuronal damage ; [Ca2+]e ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The calcium transients which are associated with spreading depression (SD) do not lead to neuronal necrosis, even if the SDs are repeated over hours. We have previously shown that a restriction of energy production by moderate hypoglycemia prolongs the calcium transients during SD. In the present experiments, we explored whether such prolonged transients lead to neuronal necrosis. To that end, SDs were elicited for 2 h by topical application of KC1 in anesthetized rats at plasma glucose concentrations of 6, 3, and 2 mM. The animals were then allowed to recover, and they were studied histopathologically after 7 days. In two other groups, hypoglycemic coma of 5 min duration (defined in terms of the d.c. potential shift) was induced either without or with a preceding train of SDs. These animals were also evaluated with respect to histopathological alterations. SDs elicited for 2 h did not give rise to neuronal damage when elicited at plasma glucose concentration of 6 mM, and, of the animals maintained at 3 and 2 mM, only a few animals showed (mild) damage. In general, therefore, repeated SDs with calcium transients of normal or increased duration fail to induce neuronal damage. The results suggest that, if calcium transients are responsible for a gradual extension of the infarct into the penumbra zone of a focal ischemie lesion some additional pathophysiological factors must be present, such as overt energy failure, acidosis, or microvascular damage. A hypoglycemia-induced calcium transient of 5 min duration gave no or only moderate neuronal damage. However, if a series of SDs were elicited in the precoma period, the damage was exaggerated. The results demonstrate that, normally, brain tissues can tolerate a hypoglycemic calcium transient of up to 5 min duration without incurring neuronal necrosis. They also demonstrate that calcium transients preceding a subsequent insult involving calcium influx into cells exaggerate the damage incurred. It is tentatively concluded that the “priming” transients alter membrane properties in such a way that cellular calcium homeostasis is perturbed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Ischemia ; Hypoglycemia ; Calcium transient ; Insulin ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The primary objective of this study was to explore why preischemic hypoglycemia, which restricts tissue acidosis during the ischemic insult, does not ameliorate cell damage incurred as a result of transient ischemia. The question arose whether hypoglycemia (plasma glucose concentration 2–3 mM) delays resumption of extrusion of Ca2+ from cells during recirculation. Measurements of extracellular Ca2+ concentration during forebrain ischemia of 15 min duration proved that this was the case. Thus, normoglycemic animals resumed Ca2+ extrusion upon recirculation after a delay of 1.5–2.0 min, and hypoglycemic ones after an additional delay which could amount to 3–4 min. We attempted to explore the cause of this delay. At first sight, the results suggested that resumption of oxidative phosphorylation upon recirculation was substrate limited. However, glucose infusion during ischemia or just after recirculation failed to accelerate Ca2+ extrusion from the cells. A comparison between non-injected and insulin-injected animals at equal plasma glucose concentrations suggested that insulin was responsible for the delay. On analysis, the delay proved to be related to a sluggish recovery of cerebral blood flow. The results suggest that when cell damage is evaluated after transient ischemia in hypo- and normoglycemic subjects, attention should be directed to the period of cell calcium ‘overload’. Unobserved differences in the duration of the calcium transient may also confound interpretation of data on the effects of insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...