Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomedical science 4 (1997), S. 244-248 
    ISSN: 1423-0127
    Keywords: Nitric oxide ; NO synthase inhibitor ; Hypertension ; Arterial hemodynamics ; Vasodilatation ; Hypoxia ; Pulmonary hypertension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Endothelium-derived nitric oxide (NO) is an important gas molecule in the regulation of vascular tone and arterial pressure. It has been considered that endothelial dysfunction with impairment of NO production contributes to a hypertensive state. Alternatively, long-term hypertension may affect the endothelial function, depress NO production, and thereby reduce the dilator action on vasculatures. There were many studies to support that endothelium-dependent vasodilatation was impaired in animals and humans with long-term hypertension. However, results of some reports were not always consistent with this consensus. Recent experiments in our laboratory revealed that an NO synthase inhibitor, NG-nitro-L-arginine monomethyl ester (L-NAME) caused elevation of arterial pressure (AP) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). The magnitude of AP increase following NO blockade with L-NAME was much higher in SHR than WKY. In other experiments with the use of arterial impedance analysis, we found that L-NAME slightly or little affected the pulsatile hemodynamics including characteristic impedance, wave reflection and ventricular work. Furthermore, these changes were not different between SHR and WKY. The increase in AP and total peripheral resistance (TPR) following NO blockade in SHR were significantly greater than those in WKY, despite higher resting values of AP and TPR in SHR. In connection with the results of other studies, we propose that heterogeneity with respect to the involvement of NO (impairment, no change or enhancement) in the development of hypertension may exist among animal species, hypertensive models and different organ vessels. Our study in SHR provide evidence to indicate that the effects of basal release of NO on the arterial pressure and peripheral resistance are not impaired, but enhanced in the hypertensive state. The increase in NO production may provide a compensatory mechanism to keep the blood pressure and peripheral resistance at lower levels. The phenomenon of enhanced NO release also occurs in certain type of pulmonary hypertension. We first hypothesized that a decrease in NO formation might be responsible for the pulmonary vasoconstriction during hypoxia. With the measurement of NO release in the pulmonary vein, we found that ventilatory hypoxia produced pulmonary hypertension accompanying an increase in NO production. Addition of NO inhibitor (L-NAME), blood or RBC into the perfusate attenuated or abolished the NO release, while potentiating pulmonary vasoconstriction. During hypoxia, the increased NO formation in the pulmonary circulation similarly exerts a compensatory mechanism to offset the degree of pulmonary vasoconstriction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1423-0127
    Keywords: Lung injury ; Nitric oxide synthase inhibitors ; Nitric oxide ; IL-1β
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS,Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1β (IL-1β) and tumor necrosis factor-α-(TNF-α). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1β and TNF-α were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1β were still significantly enhanced, but TNF-α was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included Nω-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S,S′-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1β were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1β are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...