Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4927
    Keywords: DNA fingerprinting ; population genetics ; chamois ; hypervariable minisatellites ; polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Hypervariable minisatellite DNA probes 33.15 and 33.6, originally developed for studies in human populations, were used to study genetic variation in chamois (Rupicapra rupicapra). The mean number of bands per individual was 25 for probe 33.15 and 15 for probe 33.6. The average band frequency was 0.33 for both probes. The mean similarity was 0.44, greater than that reported for human and natural populations and close to values found in domestic populations of mammals. This lack of variability could be related to the bottleneck suffered by the population due to large-scale hunting after the Spanish Civil War. Levels of variability are high compared with variability at the level of protein markers, so the use of minisatellite DNA is recommended for future population studies in this species. We did not find large genetic differences between subpopulations, indicating that the population is genetically homogeneous.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4927
    Keywords: DNA fingerprinting ; population genetics ; chamois ; hypervariable minisatellites ; polymorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Hypervariable minisatellite DNA probes 33.15 and 33.6, originally developed for studies in human populations, were used to study genetic variation in chamois (Rupicapra rupicapra). The mean number of bands per individual was 25 for probe 33.15 and 15 for probe 33.6. The average band frequency was 0.33 for both probes. The mean similarity was 0.44, greater than that reported for human and natural populations and close to values found in domestic populations of mammals. This lack of variability could be related to the bottleneck suffered by the population due to large-scale hunting after the Spanish Civil War. Levels of variability are high compared with variability at the level of protein markers, so the use of minisatellite DNA is recommended for future population studies in this species. We did not find large genetic differences between subpopulations, indicating that the population is genetically homogeneous.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0003-276X
    Keywords: Nerve growth factor receptors ; gp140-trkA ; Dorsal root ganglia ; Sympathetic ganglia ; Cutaneous sensory corpuscles ; Skin ; Immunohistochemistry ; Man ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Background: Nerve growth factor (NGF) is produced in target issues of sympathetic and neural-crest derived sensory neurons, including skin, to provide them trophic support. The biological effects of NGF on responsive cells are mediated by specific high-affinity receptors. Recently, a protein tyrosine kinase of ≃ 140 kDa molecular weight, encoded by the proto-oncogene trkA, has been identified as the high-affinity NGF receptor (gp140-trkA). The present work was undertaken to study the localization of gp140-trkA-like immunoreactivity (IR) in human peripheral ganglia (sympathetic and dorsal root ganglia), and in glabrous skin.Methods: Lumbar dorsal root ganglia, para- and prevertebral sympathetic ganglia, and digital glabrous skin were studied immunohistochemically using a rabbit anti-gp140-trkA polyclonal antibody. In order to accurately establish the localization of gp140-trkA IR, the neurofilament proteins and S-100 protein were studied in parallel in: (1) sensory and sympathetic ganglia, to label neuron cell bodies and satellite or supporting cells, respectively; (2) human skin, to label axons, Schwann and related cells within nerves and sensory corpuscles. Moreover, a quantitative study (neuron size, intensity of immunostaining) was carried out on sympathetic and dorsal root ganglia neuron cell bodies.Results: A specific gp140-trkA-like IR was found in: (1) a subpopulation (65%) of primary sensory neuron cell bodies, including most of the largesized ones but also small- and intermediate-sized ones; (2) most of sympathetic neuron cell bodies (82%); (3) theineurial cell, Schwann cells, and large axons of the nerve trunks supplying digital skin; (4) the lamellar cells of Meissner corpuscles; (5) the central axon, inner-core, outer-core, and capsule of Pacinian corpuscles. In addition, the occurrence of gp140-trkA-like IR was observed in some non-nervous tissues of the skin, including epidermis (mainly in the basal layer), sweat glands, and arterial blood vessels.Conclusions: Present results provide evidence for the localization of gp140-trkA-like IR in: (1) nerve cells which are known to be NGF-responsive, and (2) non-nervous cutaneous tissues which are innervated by NGF-dependent peripheral neruons. These findings suggest that, in addition to the well-established role of NGF on sensory and sympathetic neurons, this neurotrophin may be able to regulate some other functions on non-nervous cell which are targets for NGF-dependent peripheral neurons. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...