Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 1-21 
    ISSN: 1436-4646
    Keywords: Primal—dual interior point algorithm ; linear program ; large step ; global convergence ; polynomial-time convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper proposes two sets of rules, Rule G and Rule P, for controlling step lengths in a generic primal—dual interior point method for solving the linear programming problem in standard form and its dual. Theoretically, Rule G ensures the global convergence, while Rule P, which is a special case of Rule G, ensures the O(nL) iteration polynomial-time computational complexity. Both rules depend only on the lengths of the steps from the current iterates in the primal and dual spaces to the respective boundaries of the primal and dual feasible regions. They rely neither on neighborhoods of the central trajectory nor on potential function. These rules allow large steps without performing any line search. Rule G is especially flexible enough for implementation in practically efficient primal—dual interior point algorithms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 67 (1994), S. 109-119 
    ISSN: 1436-4646
    Keywords: Polynomial-time ; Linear programming ; Primal-dual ; Interior-point algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract Kojima, Megiddo, and Mizuno investigate an infeasible-interior-point algorithm for solving a primal—dual pair of linear programming problems and they demonstrate its global convergence. Their algorithm finds approximate optimal solutions of the pair if both problems have interior points, and they detect infeasibility when the sequence of iterates diverges. Zhang proves polynomial-time convergence of an infeasible-interior-point algorithm under the assumption that both primal and dual problems have feasible points. In this paper, we show that a modification of the Kojima—Megiddo—Mizuno algorithm “solves” the pair of problems in polynomial time without assuming the existence of the LP solution. Furthermore, we develop anO(nL)-iteration complexity result for a variant of the algorithm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 52 (1991), S. 587-595 
    ISSN: 1436-4646
    Keywords: Linear programming ; linear complementarity problem ; interior point algorithms ; path following algorithms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract In this paper we propose an O(n 3 L) algorithm which is a modification of the path following algorithm [8] for a linear complementarity problem. The path following algorithm has to take a short step size in each iteration in order to bound the number of overall arithmetic operations by O(n 3 L). In practical computation, we can determine the step size adaptively. Mizuno, Yoshise, and Kikuchi [11] reported that such an adaptive algorithm required about O(L) iterations for some test problems. Here we show that we can use a rank one update technique in the adaptive algorithm so that the number of overall arithmetic operations is theoretically bounded by O(n 3 L).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 361-375 
    ISSN: 1436-4646
    Keywords: Interior point algorithm ; big ℳ ; linear program ; convex program ; complementarity problem ; potential reduction algorithm ; self-dual linear program
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract When we apply interior point algorithms to various problems including linear programs, convex quadratic programs, convex programs and complementarity problems, we often embed an original problem to be solved in an artificial problem having a known interior feasible solution from which we start the algorithm. The artificial problem involves a constantℳ (or constants) which we need to choose large enough to ensure the equivalence between the artificial problem and the original problem. Theoretically, we can always assign a positive number of the order O(2 L ) toℳ in linear cases, whereL denotes the input size of the problem. Practically, however, such a large number is impossible to implement on computers. If we choose too largeℳ, we may have numerical instability and/or computational inefficiency, while the artificial problem withℳ not large enough will never lead to any solution of the original problem. To solve this difficulty, this paper presents “a little theorem of the bigℳ”, which will enable us to find whetherℳ is not large enough, and to updateℳ during the iterations of the algorithm even if we start with a smallerℳ. Applications of the theorem are given to a polynomial-time potential reduction algorithm for positive semi-definite linear complementarity problems, and to an artificial self-dual linear program which has a close relation with the primal—dual interior point algorithm using Lustig's limiting feasible direction vector.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 23-31 
    ISSN: 1436-4646
    Keywords: Linear programming ; duality theorem ; unimodular ; totally unimodular ; interior point methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract In this paper we consider a linear programming problem with the underlying matrix unimodular, and the other data integer. Given arbitrary near optimum feasible solutions to the primal and the dual problems, we obtain conditions under which statements can be made about the value of certain variables in optimal vertices. Such results have applications to the problem of determining the stopping criterion in interior point methods like the primal—dual affine scaling method and the path following methods for linear programming.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Annals of operations research 62 (1996), S. 59-80 
    ISSN: 1572-9338
    Keywords: Linear programming ; infeasible-interior-point method ; polynomiality ; projection ; 90C05
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Economics
    Notes: Abstract We present a new class of primal-dual infeasible-interior-point methods for solving linear programs. Unlike other infeasible-interior-point algorithms, the iterates generated by our methods lie in general position in the positive orthant of ℝ2 and are not restricted to some linear manifold. Our methods comprise the following features: At each step, a projection is used to “recenter” the variables to the domainx i s i ≥μ. The projections are separable into two-dimensional orthogonal projections on a convex set, and thus they are seasy to implement. The use of orthogonal projections allows that a full Newton step can be taken at each iteration, even if the result violates the nonnegativity condition. We prove that a short step version of our method converges in polynomial time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 61 (1993), S. 263-280 
    ISSN: 1436-4646
    Keywords: Infeasible-interior-point algorithm ; interior-point algorithm ; primal—dual algorithm ; linear program ; large step ; global convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract As in many primal—dual interior-point algorithms, a primal—dual infeasible-interior-point algorithm chooses a new point along the Newton direction towards a point on the central trajectory, but it does not confine the iterates within the feasible region. This paper proposes a step length rule with which the algorithm takes large distinct step lengths in the primal and dual spaces and enjoys the global convergence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 82 (1998), S. 339-355 
    ISSN: 1436-4646
    Keywords: Linear programming ; Layered-step interior-point method ; Path of centers ; Crossover events
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract The layered-step interior-point algorithm was introduced by Vavasis and Ye. The algorithm accelerates the path following interior-point algorithm and its arithmetic complexity depends only on the coefficient matrixA. The main drawback of the algorithm is the use of an unknown big constant $$\bar \chi _A $$ in computing the search direction and to initiate the algorithm. We propose a modified layered-step interior-point algorithm which does not use the big constant in computing the search direction. The constant is required only for initialization when a well-centered feasible solution is not available, and it is not required if an upper bound on the norm of a primal—dual optimal solution is known in advance. The complexity of the simplified algorithm is the same as that of Vavasis and Ye. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 62 (1993), S. 119-131 
    ISSN: 1436-4646
    Keywords: Linear programming ; interior point algorithm ; complexity ; potential function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract We propose a potential-reduction algorithm which always uses the primal—dual affine-scaling direction as a search direction. We choose a step size at each iteration of the algorithm such that the potential function does not increase, so that we can take a longer step size than the minimizing point of the potential function. We show that the algorithm is polynomial-time bounded. We also propose a low-complexity algorithm, in which the centering direction is used whenever an iterate is far from the path of centers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Applied mathematics & optimization 33 (1996), S. 315-341 
    ISSN: 1432-0606
    Keywords: Linear programming ; Quadratic programming ; Linear complementarity problem ; Infeasible-interior-point algorithm ; Polynomial time ; 90C33 ; 65F05
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract There are many interior-point algorithms for LP (linear programming), QP (quadratic programming), and LCPs (linear complementarity problems). While the algebraic definitions of these problems are different from each other, we show that they are all of the same general form when we define the problems geometrically. We derive some basic properties related to such geometrical (monotone) LCPs and based on these properties, we propose and analyze a simple infeasible-interior-point algorithm for solving geometrical LCPs. The algorithm can solve any instance of the above classes without making any assumptions on the problem. It features global convergence, polynomial-time convergence if there is a solution that is “smaller” than the initial point, and quadratic convergence if there is a strictly complementary solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...