Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 241 (1985), S. 291-297 
    ISSN: 1432-0878
    Keywords: Retina ; Inosine diphosphatase ; Histochemistry ; Microvasculature ; Microglia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Nucleoside diphosphatase (IDPase), localized using inosine diphosphate as substrate, allows the selective staining of blood vessels and cells of vascular origin, such as macrophages and microglia, whereas the neuroglial, the neuronal and the pigment epithelial cells remain unstained. The staining pattern observed in the retina of mouse, rat, cat and monkey are similar; some apparent quantitative differences reflect species differences in the distribution of retinal microvasculature. At the electron-microscopic level, most of the enzyme activity in the blood vessels appears to be located along the outer wall. The cell membrane, parts of the smooth endoplasmic reticulum and the nuclear membrane in the microglial perikarya appear positive; profiles of microglial processes are intensely stained. In the developing eyes of rats and mice, the blood vessels are stainable from the earliest stage of their appearance. An array of amoeboid cells precede the growing blood vessels and spread out over the future vascularized part of the retina. These cells eventually develop characteristic microglial features, and extend many elongated and branched processes between the neuroepithelial cells while remaining in contact with, or in close proximity to, the blood vessels. Intense IDPase activity in the microglial cells, in contrast to the absence of the enzyme in the neuroglial Müller cells, suggests that microglia are involved in phosphate metabolism and indicates functional compartmentalization within the glial tissue lying between the blood retinal barrier and the retinal neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...