Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Insulin receptor  (1)
  • glucose clamp  (1)
  • 1
    ISSN: 1432-0428
    Keywords: Glucosamine ; insulin resistance ; insulin secretion ; glucose toxicity ; glucose clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We tested the hypothesis that glucosamine, a putative activator of glucose toxicity in vitro through acceleration of the hexosamine pathway, may determine in vivo the two key features of glucose toxicity in diabetes, namely, peripheral insulin resistance and decreased insulin secretion. Two groups of awake rats were studied either with intraarterial administration of glucosamine (5 Μmol·kg−1· min−1) or saline. Insulin secretion was determined after arginine, glucose (hyperglycaemic clamp), and arginine/glucose infusions, while insulin-mediated glucose metabolism was assessed by the euglycaemic hyperinsulinaemic clamp in combination with [3-3H]-glucose infusion. Glucosamine had no effects on arginine-induced insulin secretion both at euglycaemia and hyperglycaemia, but significantly (40–50%) impaired glucose-induced insulin secretion (both first and second phases). During euglycaemic hyperinsulinaemic clamp studies, glucosamine decreased glucose uptake by ∼30%, affecting glycolysis (estimated from 3H2O rate of appearance) and muscle glycogen synthesis (calculated from accumulation of [3H]-glucosyl units in muscle glycogen) to a similar extent. Muscle glucose 6-phosphate concentration was markedly reduced in the glucosamine-infused rats, suggesting an impairment in glucose transport/phosphorylation. Therefore, an increase in hexosamine metabolism in vivo: 1) inhibits glucose-induced insulin secretion, and 2) reduces insulin stimulation of both glycolysis and glycogen synthesis, thereby mimicking in normal rats the major alterations due to glucose toxicity in diabetes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Insulin receptor ; alternative splicing ; hyperinsulinism ; insulin resistance ; insulinoma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Alternative splicing of the 36-base pair exon 11 of the human insulin receptor gene results in the synthesis of two insulin receptor isoforms with distinct functional characteristics (the isoform containing exon 11 has lower insulin binding affinity and lower internalization rate). Altered expression of these insulin receptor isoforms has been previously demonstrated in skeletal muscle of patients with non-insulin-dependent diabetes mellitus (NIDDM). However, this observation was not confirmed by other studies and is still a matter of controversy; furthermore, it is not known whether it represents a primary event or is secondary to hyperinsulinaemia and insulin resistance. In order to address this issue in patients with pure non-genetically determined hyperinsulinaemia, we examined the alternative splicing of insulin receptor mRNAs in skeletal muscle of eight patients with surgically confirmed insulinoma and insulin resistance and in eight healthy subjects, using the reverse transcriptase-polymerase chain reaction technique. The insulinoma patients displayed a significant increase in the expression of the insulin receptor isoform containing exon 11 (75.7±2.3%) when compared with normal subjects (57.9±1.5%); furthermore, this increase was positively correlated with plasma insulin concentration and negatively correlated with in vivo insulin sensitivity (glucose clamp). In conclusion, the increased expression of the insulin receptor isoform with lower insulin binding affinity in patients with primary non-genetically determined hyperinsulinaemia supports a role for insulin in the regulation of alternative splicing of insulin receptor pre-mRNA and suggests that in NIDDM an altered receptor isoform distribution might be secondary to the ambient hyperinsulinaemia rather than representing a primary defect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...