Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Invertebrate  (1)
  • Negative binomial density  (1)
  • Noncoding nucleotide sequences  (1)
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    ISSN: 1432-1432
    Schlagwort(e): Globin ; Invertebrate ; Phylogenetic tree ; Maximum parsimony
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary A phylogenetic tree was constructed from 245 globin amino acid sequences. Of the six plant globins, five represented the Leguminosae and one the Ulmaceae. Among the invertebrate sequences, 7 represented the phylum Annelida, 13 represented Insecta and Crustacea of the phylum Arthropoda, and 6 represented the phylum Mollusca. Of the vertebrate globins, 4 represented the Agnatha and 209 represented the Gnathostomata. A common alignment was achieved for the 245 sequences using the parsimony principle, and a matrix of minimum mutational distances was constructed. The most parsimonious phylogenetic tree, i.e., the one having the lowest number of nucleotide substitutions that cause amino acid replacements, was obtained employing clustering and branch-swapping algorithms. Based on the available fossil record, the earliest split in the ancestral metazoan lineage was placed at 680 million years before present (Myr BP), the origin of vertebrates was placed at 510 Myr BP, and the separation of the Chondrichthyes and the Osteichthyes was placed at 425 Myr BP. Local “molecular clock” calculations were used to date the branch points on the descending branches of the various lineages within the plant and invertebrate portions of the tree. The tree divided the 245 sequences into five distinct clades that corresponded exactly to the five groups plants, annelids, arthropods, molluscs, and vertebrates. Furthermore, the maximum parsimony tree, in contrast to the unweighted pair group and distance Wagner trees, was consistent with the available fossil record and supported the hypotheses that the primitive hemoglobin of metazoans was monomeric and that the multisubunit extracellular hemoglobins found among the Annelida and the Arthropoda represent independently derived states.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular evolution 19 (1983), S. 437-448 
    ISSN: 1432-1432
    Schlagwort(e): Base substitution patterns ; Mutability ; Poisson density ; Geometric density ; Negative binomial density ; Natural selection ; Amino acids ; Proteins ; Genes ; Nucleotides
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary We have examined the extensive amino acid sequence data now available for five protein families — the α crystallin A chain, myoglobin, alpha and beta hemoglobin, and the cytochromesc — with the goal of estimating the true spatial distribution of base substitutions within genes that code for proteins. In every case the commonly used Poisson density failed to even approximate the experimental pattern of base substitution. For the 87 species of beta hemoglobin examined, for example, the probability that the observed results were from a Poisson process was the minuscule 10−44. Analogous results were obtained for the other functional families. All the data were reasonably, but not perfectly, described by the negative binomial density. In particular, most of the data were described by one of the very simple limiting forms of this density, the geometric density. The implications of this for evolutionary inference are discussed. It is evident that most estimates of total base substitutions between genes are badly in need of revision.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-1432
    Schlagwort(e): Noncoding nucleotide sequences ; DNA hybridization ; Primate phylogeny ; Maximum parsimony ; Cladistic classification
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary The genetic distances among primate lineages estimated from orthologous noncoding nucleotide sequences of β-type globin loci and their flanking and intergenic DNA agree closely with the distances (delta T50H values) estimated by cross hybridization of total genomic single-copy DNAs. These DNA distances and the maximum parsimony tree constructed for the nucleotide sequence orthologues depict a branching pattern of primate lineages that is essentially congruent with the picture from phylogenetic analyses of morphological characters. The molecular evidence, however, resolves ambiguities in the morphological picture and provides an objective view of the cladistic position of humans among the primates. The molecular data group humans with chimpanzees in subtribe Hominina, with gorillas in tribe Hominini, orangutans in subfamily Homininae, gibbons in family Hominidae, Old World monkeys in infraorder Catarrhini, New World monkeys in semisuborder Anthropoidea, tarsiers in suborder Haplorhini, and strepsirhines (lemuriforms and lorisiforms) in order Primates. A seeming incongruency between organismal and molecular levels of evolution, namely that morphological evolution appears to have speeded up in higher primates, especially in the lineage to humans, while molecular evolution has slowed down, may have the trivial explanation that relatively small genetic changes may sometimes result in marked phenotypic changes.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...