Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Earth, moon and planets 73 (1996), S. 221-236 
    ISSN: 1573-0794
    Keywords: Planet ; Jupiter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In the deep interior of the giant planets Jupiter and Saturn, ordinary hydrogen and helium are transformed into a conducting metallic liquid at extremely high pressure. It is likely that the giant planets' observed magnetic field is constantly generated in the metallic fluid core by magnetohydrodynamic processes, converting mechanic energy in the form of convection into magnetic energy. The maximum strength of their magnetic fields is likely to be limited by magnetic field instabilities which convert the magnetic energy back into convection. The parameter which governs the occurrence of magnetic instabilities is the Elsasser number, λ = B 2Σ/2Ωϱ, where B is the field strength, Σ is the electrical conductivity, Ω is the rotation rate and ϱ is the density. Since magnetic instability will be very active when λ exceeds a critical value λ c ∼ 10 (the precise value depending on the magnetic field distribution), this imposes an upper bound on the effective electrical conductivity of the metallic fluid which comprises the bulk of Jupiter's interior and much of Saturn's. Stability calculations including both toroidal (model) and poloidal (observed) components of the magnetic field in a rapidly rotating spherical shell, have been performed. The most stable configuration of the field is when the poloidal component of field is strong and the toroidal field is weak; in this case we obtain an upper bound for electrical conductivity of Σ ∼ 3 × 106 S/m; while the most unstable configuration of the field is when the toroidal and poloidal fields are comparable, giving rise to Σ m ∼ 3 × 105 S/m. The implications of the results for general dynamo theory are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Apparent amylose ; Microsatellite ; Waxy ; Rice ; RNA splicing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The Waxy gene (Wx) encodes the granule-bound starch synthase responsible for the synthesis of amylose in rice (Oryza sativa). Recently, a polymorphic microsatellite sequence closely linked to the Wx gene was reported. To determine whether polymorphism in this sequence correlates with variation in apparent amylose content, we tested an extended pedigree of 92 current and historically important long-, medium- and short-grain US rice cultivars representing the efforts of many breeders over more than 80 years. Seven Wx microsatellite alleles were identified which together explained 82.9% of the variation in apparent amylose content of the 89 non-glutinous rice cultivars tested. Similar results were also obtained with 101 progenyof a cross between low- and intermediate-amylose breeding lines. An additional, unique microsatelliteallele, (CT)16, was detected in one glutinous cultivar,CI 5309. However, the other glutinous cultivars,Calmochi 101 and Tatsumi mochi, were in the (CT)17 class along with three other cultivars that contained15–16.5% amylose. We sequenced a 200-bp PCR-amplified fragment containing the CT microsatellite and the putative 5′ splice site of the Wx leader intron from a subset of 42 cultivars representing all eight microsatellite alleles. All of the cultivars with 18% or less amylose had the sequence AGTTATA at the putative leader intron 5′ splice site, while all cultivars with a higher proportionof amylose had AGTTATA. This single nucleotidesubstitution could also be assayed by AccI digestion of the amplified fragment. Overall, this single nucleotide polymorphism could explain 79.7% of the variation in the apparent amylose content of the 89 non-glutinous cultivars tested. Interestingly, cultivars in the (CT)19 microsatellite classes that differed substantially in amylose content still showed the correlation between this G-T polymorphism and apparent amylose content. The G-T polymorphism at this site was not, however, able to explain the very low amylose contents of the three glutinous cultivars tested, all of which had the sequence AGTTATA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Studia geophysica et geodaetica 42 (1998), S. 247-253 
    ISSN: 1573-1626
    Keywords: convection ; hyperviscosity ; dynamos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Notes: Abstract The most fundamental difficulty in the construction of an Earth-like dynamo model is associated with the constraint caused by the rapid rotation of the Earth. To stabilise numerical codes, many workers have introduced hyperviscosity into the governing equations. One of the major effects introduced by hyperviscosity is to offset the rotational constraint, and, consequently, to alter the key dynamics of an Earth-like dynamo. In this paper, an Earth-like convection model with or without the presence of an imposed magnetic field is investigated with or without the effect of hyperviscosity. A nonlinear dynamo model with the mean field approximation is also used to examine the dynamical effect of hyperviscosity. The results suggest that great care should be taken when hyperviscosity is employed in geodynamo models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...