Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words: Kidney cortex — Proximal tubules — Wheat-germ agglutinin — Endosomes — BBM Vesicles — V-type H+-ATPase — FITC-albumin — Collagenase A  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 153 (1996), S. 59-73 
    ISSN: 1432-1424
    Keywords: Key words: Kidney cortex — Proximal tubules — Wheat-germ agglutinin — Endosomes — BBM Vesicles — V-type H+-ATPase — FITC-albumin — Collagenase A
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. During the preparation of a suspension of dog kidney proximal tubules by collagenase treatment, an uptake of FITC-albumin was demonstrated. This process is attributed to the activation of receptor-mediated endocytosis leading to the appearance of FITC-albumin into intracellular vesicular structures. The isolation of brush border membrane vesicles (BBMV) from the dog kidney proximal tubules in suspension by the magnesium precipitation technique leads to the copurification of a large population of endosomes. These endosomes were separated from BBM vesicles by a technique involving wheat-germ agglutinin. The enrichment in BBM markers and in bafilomycin-sensitive ATPase activity was comparable in endosomes and BBM vesicles. However, the acridine orange acidification assay showed a V-type ATPase-dependent acidification in endosomes but not in BBMV, demonstrating a different orientation of the proton pumps in these structures. SDS-PAGE analysis also showed significant differences in protein pattern of vesicles and endosomes. The most notable difference was the presence of 42–44 kDa and 20–24 kDa proteins in BBMV and their complete absence in endosomes. Western blot analysis identified these proteins as actin and RhoA, among other small proteins, respectively. Western blot experiments also demonstrated a different distribution of β-COP, β-adaptin, and RhoGDI in vesicles and endosomes. The morphological aspect (electron microscopy) and sedimentation of endosomes in a 50% Percoll gradient identified these structures as ``heavy endosomes'' (buoyant density D= 1.036 g/ml). Flow cytometry analysis of heavy endosomes purified from tubules isolated in presence of FITC-albumin showed the presence of FITC-albumin in up to 92% of these intracellular organelles. Western blot analysis using anti-FITC and anti-collagenase antibodies allowed quantification of the FITC-albumin and collagenase A in the purified endosomes. Our results indicate that heavy endosomes are formed during the preparation of the proximal tubules following activation of receptor-mediated endocytosis, probably by soluble proteins. The suspension of tubules thus offers a experimental tool to study the protein reabsorption and traffic of endosomal vesicles in the proximal tubules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...