Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words: Molecular dynamics  (1)
  • enzyme inhibition  (1)
  • protein electrostatics  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 99 (1998), S. 279-288 
    ISSN: 1432-2234
    Keywords: Key words: Molecular dynamics ; Biomolecular simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. Coupled advances in empirical force fields and classical molecular dynamics simulation methodologies, combined with the availability of faster computers, has lead to significant progress towards accurately representing the structure and dynamics of biomolecular systems, such as proteins, nucleic acids, and lipids in their native environments. Thanks to these advances, simulation results are moving beyond merely evaluating force fields, displaying expected structural fluctuations, or demonstrating low root-mean-squared deviations from experimental structures and now provide believable structural insight into a variety of processes such as the stabilization of A-DNA in mixed water and ethanol solution or reversible β-peptide folding in methanol. The purpose of this overview is to take stock of these recent advances in biomolecular simulation and point out some common deficiencies exposed in longer simulations. The most significant methodological advances relate to the development of fast methods to properly treat long-range electrostatic interactions, and in this regard the fast Ewald methods are becoming the de facto standard.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 6 (1989), S. 32-45 
    ISSN: 0887-3585
    Keywords: long range truncation ; molecular dynamics ; myoglobin ; truncation effects ; protein electrostatics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: This paper considers the effects of truncating long-range forces on protein dynamics. Six methods of truncation that we investigate as a function of cutoff criterion of the long-range potentials are (1) a shifted potential; (2) a switching function; (3) simple atom-atom truncation based on distance; (4) simple atom-atom truncation based on a list which is updated periodically (every 25 steps); (5) simple group-group truncation based on distance; and (6) simple group-group truncation based on a list which is updated periodically (every 25 steps). Based on 70 calculations of carboxymyoglobin we show that the method and distance of long range cutoff have a dramatic effect on overall protein behavior. Evaluation of the different methods is based on comparison of a simulation's rms fluctuation about the average coordinates of a no cutoff simulation and from the X-ray structure of the protein. The simulations in which long-range forces are truncated by a shifted potential shows large rms deviations for cutoff criteria less than 14 Å, and reasonable deviations and fluctuations at this cutoff distance or larger. Simulations using a switching function are investigated by varying the range over which electrostatic interactions are switched off. Results using a short switching function that switches off the potential over a short range of distances are poor for all cutoff distances. A switching function over a 5-9 Å range gives reasonable results for a distance-dependent dielectric, but not using a constant dielectric. Both the atom-atom and group-group truncation methods based on distance shows large rms deviations and fluctuation for short cutoff distance, while for cutoff distance of 11 Å or greater, reasonable results are achieved. Although comparison of these to distance-based truncation methods show surprisingly larger rms deviations for the group-group truncation, contrary to simulation studies of aqueous ionic solutions. The results of atom-atom or group-group list-based simulations generally appear to be less stable than the distance-based simulations, and require more frequent velocity scaling or stronger coupling to a heat bath.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0887-3585
    Keywords: AIDS ; energy minimization ; enzyme inhibition ; molecular modeling ; protein conformation ; crosscorrelation map ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The dynamic behavior of one 99-residue subunit of the dimeric aspartyl protease of HIV-1 was studied in a 160 psec molecular dynamics simulation at 300 K in water. The crystal structure of one of the identical subunits of the dimer was the starting point, with the aqueous phase modeled by 4,331 explicit waters in a restrained spherical droplet Analysis of the simulations showed that the monomer displayed considerable flexibility in the interfacial portions of the flap (the region which folds over the substrate), the N- and C-0termini, and, to a lesser extent, the active site. The flap undergoes significant motion as an independent rigid finger, but without the cantilever previously reported hi a simulation of the dimer. The N-terminus displayed the greatest fluctuational disorder whereas the C-terminus exhibited the greatest root mean square movement from the crystal structure. The central core of the monomer had a heavy-atom root mean square deviation from the initial structure of about 3.0 Å during the latter half of the simulation. Although this is larger than the 1.6 Å found for comparable simulations of typical globular proteins, the general features of the tertiary structure were preserved over the course of the simulation. Overall, these results indicate that the relaxed structure obtained in these simulations may provide a better model for the tertiary structure of the solvated HIV-1 protease monomer than the subunit conformation seen in the X-ray crystallographic structure of the dimer. Except in the flap region, the design of compounds intended to interfere with dimerization should take this relaxation and the flexibility of the solvated monomer, especially at the termini, into account. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...